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Abstract

We provide new theoretical results for apprenticeshiprlieay, a variant of rein-
forcement learning in which the true reward function is umkn, and the goal
is to perform well relative to an observed expert. We studgmmon approach
to learning from expert demonstrations: using a classiéinadlgorithm to learn
to imitate the expert’'s behavior. Although this straightfard learning strategy
is widely-used in practice, it has been subject to venelifdrmal analysis. We
prove that, if the learned classifier has error rat¢he difference between the
value of the apprentice’s policy and the expert's policyJig,/e). Further, we
prove that this difference is onl9(¢) when the expert’s policy is close to optimal.
This latter result has an important practical consequelNoeonly does imitating
a near-optimal expert result in a better policy, but far fiedemonstrations are
required to successfully imitate such an expert. This sstggEn opportunity for
substantial savings whenever the expert is known to be dnddjemonstrations
are expensive or difficult to obtain.

1 Introduction

Apprenticeship learnings a variant of reinforcement learning, first introduced Hyb&el & Ng [1]
(seealso[2, 3, 4, 5, 6]), designed to address the diffichiitpoectly specifying the reward function
in many reinforcement learning problems. The basic idea@tyithg apprenticeship learning is that
a learning agent, called ttapprentice is able to observe another agent, calledekiert behaving

in a Markov Decision Process (MDP). The goal of the apprerido learn a policy that is at least
as good as the expert’s policy, relative touarknowrreward function. This is a weaker requirement
than the usual goal in reinforcement learning, which is td #npolicy that maximizes reward.
The development of the apprenticeship learning framewa& prompted by the observation that,
although reward functions are often difficult to specifyyramstrations of good behavior by an
expert are usually available. Therefore, by observing suekpert, one can infer information about
the true reward function without needing to specify it.

Existing apprenticeship learning algorithms have a nunobéimitations. For one, they typically
assume that the true reward function can be expressed a&aadiombination of a set of known fea-
tures. However, there may be cases where the apprenticaviling or unable to assume that the
rewards have this structure. Additionally, most formuat of apprenticeship learning are actually
harder than reinforcement learning; apprenticeship learningrtigms typically invoke reinforce-
ment learning algorithms as subroutines, and their pedoce guarantees depend strongly on the
quality of these subroutines. Consequently, these appeship learning algorithms suffer from the
same challenges of large state spaces, exploration voi@tjan trade-offs, etc., as reinforcement
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learning algorithms. This fact is somewhat contrary to titeition that demonstrations from an
expert — especially a good expert — should make the problesieeaot harder.

Another approach to using expert demonstrations that leas/esl attention primarily in the empir-
ical literature is to passivelynitatethe expert using a classification algorithm (see [7, Sect]dar

a comprehensive survey). Classification is the most watlisti machine learning problem, and it
is sensible to leverage our knowledge about this “easiatilem in order to solve a more “difficult”
one. However, there has been little formal analysis of ttrgightforward learning strategy (the
main recent example is Ross & Bagnell [8], discussed beltmhis paper, we consider a setting
in which an apprentice uses a classification algorithm tgipaly imitate an observed expert in an
MDP, and we bound the difference between the value of theeapipe’s policy and the value of
the expert’s policy in terms of the accuracy of the learnedggifier. Put differently, we show that
apprenticeship learning can klelucedto classification. The idea of reducing one learning problem
to another was first proposed by Zadrozny & Langford [9].

Our main contributions in this paper are a pair of theorétiesults. First, we show that the differ-
ence between the value of the apprentice’s policy and therégpolicy isO(y/€),! wheree € (0, 1]

is the error of the learned classifier. Secondly, and perhape interestingly, we extend our first
result to prove that the difference in policy values is oflfe) when the expert’s policy is close to
optimal. Of course, if one could perfectly imitate the exp#ren naturally a near-optimal expert
policy is preferred. But our result implies something ferththat near-optimal experts are actually
easierto imitate, in the sense that fewer demonstration are redu@ achieve the same performance
guarantee. This has important practical consequenceselfsocertaira priori that the expert is
demonstrating good behavior, then our result implies thatynfiewer demonstrations need to be col-
lected than if this were not the case. This can yield subsiesavings when expert demonstrations
are expensive or difficult to obtain.

2 Related Work

Several authors have reduced reinforcement learning tplsimproblems. Bagnekt al [10] de-
scribed an algorithm for constructing a good nonstatiomenticy from a sequence of good “one-
step” policies. These policies are only concerned with méing reward collected in a single
time step, and are learned with the help of observations fronexpert. Langford & Zadrozny
[11] reduced reinforcement learning to a sequence of ¢leagon problems (see also Blatt & Hero
[12]), but these problems have an unusual structure, analithers are only able to provide a small
amount of guidance as to how data for these problems can leetenl. Kakade & Langford [13]
reduced reinforcement learning to regression, but requidelitional assumptions about how easily
a learning algorithm can access the entire state space rtiamly, all this work makes the standard
reinforcement learning assumptions that the true rewargl&r@own, and that a learning algorithm
is able to interact directly with the environment. In thigppawe are interested in settings where
the reward function is not known, and where the learningritym is limited to passively observing
an expert. Concurrently to this work, Ross & Bagnell [8] haescribed an approach to reducing
imitation learning to classification, and some of their s resembles ours. However, their frame-
work requires somewhat more than passive observation axpert, and is focused on improving
the sensitivity of the reduction to the horizon length, i tlassification error. They also assume
that the expert follows a deterministic policy, and asstompive do not make.

3 Preliminaries

We consider dinite-horizonMDP, with horizonH. We will allow the state spac§ to be infinite,
but assume that the action spatés finite. Leta be the initial state distribution, arftthe transition
function, wherél(s, a, -) specifies the next-state distribution from state S under actioru € A.

The only assumption we make about theknownreward functionR is that0 < R(s) < R™#* for

all statess € S, whereR™#* s a finite upper bound on the reward of any state.

The big-O notation is concealing a polynomial dependence on other prgiieameters. We give exact
bounds in the body of the paper.



We introduce some notation and definitions regarding pesiciA policyr is stationaryif it is a
mapping from states to distributions over actions. In tkisesr (s, a) denotes the probability of
taking actioru in states. Let IT be the set of all stationary policies. A poliayis nonstationanyif it
belongs to the séi’! =11 x - - - (H times)- - - x II . In this caser; (s, a) denotes the probability of
taking actiona in states at timet¢. Also, if 7 is nonstationary, then;, refers to the stationary policy
that is equal to the'" component ofr. A (stationary or nonstationary) poliey is deterministicif
each one of its action distributions is concentrated on glsiaction. If a deterministic policy is
stationary, themr(s) is the action taken in state and if = is nonstationary, the.(s) is the action
taken in state at timet.

We define the value functiol,"(s) for a nonstationary policy- at time¢ as follows in the usual
manner:

H

Z R(sv) ’ st =8, ap ~ (S, 7), Ser41 ~ O(sp, av, )
t'=t
SoV;/™(s) is the expected cumulative reward for following poliewvhen starting at stateand time
stept. Note that there are several value functions per nonstatyguolicy, one for each time step
The value of a pollcy is defined to B&(wr) £ E[V{(s) | s ~ a(-)], and an optimal policyt* is one
that satisfiesr* £ arg max, V(7).

Vi(s) £ E

We write 7w to denote the (possibly nonstationary) expert policy, Bffds) as an abbreviation for

Vt”E(s). Our goal is to find a nonstationary apprentice policysuch that/ (74) > V(7¥). Note
that the values of these policies are with respect taitleownreward function.

Let D] be the distribution on state-action pairs at timender policyr. In other words, a sample
(s,a) is drawn fromD7 by first drawings; ~ «(-), then following policyr for time stepd through
t, which generates a trajectofy;, a1, - . - , s¢, a;), and then lettings, a) = (s, a;). We write DF as
an abbreviation foD] " In a minor abuse of notation, we write~ D7 to mean: draw state-action
pair (s, a) ~ DT, and discard..

4 Details and Justification of the Reduction

Our goal is to reduce apprenticeship learning to classificaso let us describe exactly how this
reduction is defined, and also justify the utility of such duetion.

In a classification problem, a learning algorithm is giverraning set((z1,y1),- .-, (Tm, Ym)),
where each labeled examgle;, y;) € X x ) is drawn independently from a distributidhon X’ x
Y. HereX is the example space apdis the finite set of labels. The learning algorithm is als@giv
the definition of a hypothesis clags, which is a set of functions mappiny to ). The objective
of the learning algorithm is to find a hypothegis= # such that the erroPr(,, ,).p(h(z) # y) is
small.

For our purposes, the hypothesis clégss said to bePAC-learnableif there exists a learning
algorithm A such that, wheneved is given a training set of sizes = poly(%, %), the algorithm
runs forpoly(%, 1) steps and outputs a hypothesig # such that, with probability at least— 4,

we havePr(, ,y..p (E( ) # y) < €y,p + € Hereey , = infrey Prepyyp(h(x) # y) is the

error of the best hypothesis . The expressiomoly (3, 2) will typically also depend on other
quantities, such as the number of lab@isand theVC- dlmenS|omf ‘H [14], but this dependence is
not germane to our discussion.

The existence of PAC-learnable hypothesis classes is #s®mnehat reducing apprenticeship learn-
ing to classification is a sensible endeavor. Suppose teaapprentice observes independent
trajectories from the expert’s poliey”, where theth trajectory is a sequenoﬁe"l, ay, ..., sy, a}{).

The key is to note that eadRk, a}) can be viewed as an independent sample from the distribution
DE. Now consider a PAC-learnable hypothesis clissvhere?{ contains a set of functions map-
ping the state spacg to the finite action spacd. If m = poly(H(s, E) then for each time step

t, the apprentice can use a PAC learning algorithni{ato learn a hypothesﬁt € H such that,
with probability at least — 7, we havePr, ., pr (ht( ) a) < &, pp +¢. And by the union
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bound, this inequality holds fail ¢ with probability at least — 4. If eache}, ,» +¢is small, then a

natural choice for the apprentice’s poligy is to setr;* = hy for all t. This policy uses the learned
classifiers to imitate the behavior of the expert.

In light of the preceding discussion, throughout the remeairof this paper we make the following
assumption about the apprentice’s policy.

Assumption 1. The apprentice policy 74 is a deterministic policy that satisfies
Pr(g a)~pE (7 (s) # a) < e for somee > 0 and all time steps.

As we have shown, an apprentice policy satisfying Assumpiiavith smalle can be found with
high probability, provided that expert’s policy is wellqageximated by a PAC-learnable hypothesis
class and that the apprentice is given enough trajectaoes the expert. A reasonable intuition is
that the value of the policy“ in Assumption 1 is nearly as high as the value of the patiy the
remainder of this paper is devoted to confirming this induiti

5 Guarantee for Any Expert

If the error ratee in Assumption 1 is small, then the apprentice’s policy closely imitates the
expert’s policyr?, and we might hope that this implies that*) is not much less thaif (7).
This is indeed the case, as the next theorem shows.

Theorem 1. If Assumption 1 holds, the¥i(74) > V(7 ) — 2\/e H? R™ax,

In a typical classification problem, it is assumed that taétng and test examples are drawn from
the same distribution. The main challenge in proving Thetes that this assumption doesthold

for the classification problems to which we have reduced fipeemticeship learning problem. This
is because, although each state-action pdirai) appearing in an expert trajectory is distributed
according toDF, a state-action paifs;, a;) visited by the apprentice’s policy may not follow this
distribution, since the behavior of the apprentice priotitoe stept may not exactly match the
expert’s behavior. So our strategy for proving Theorem 1 Inélto show that these differences do
not cause the value of the apprentice policy to degrade tahmelative to the value of the expert’s

policy.

Before proceeding, we will show that Assumption 1 impliesoadition that is, for our purposes,
more convenient.

Lemma 1. Let# be a deterministic nonstationary policy. Bt .y p=(7+(s) # a) < ¢, then for
all e, € (0,1] we havePr,,_ s (mF(s,mu(s) > 1—e) >1— =
Proof. Fix anye; € (0, 1], and suppose for contradiction that, e (7/ (s, 7t (s)) > 1 — 1) <
1 — £. Say that a stateis goodif 7E(s,7:(s)) > 1 — €1, and thats is bad otherwise. Then

Prsoyope(fi(s) = a) = Pr,_pe(sis good - Pr(, .y p=(7i(s) = a | sis good
+Pr, pe(sisbad - Pr(, . p=(fi(s) = a| sis bad
<Pr, pe(sisgood -1+ (1 —Pr, pe(sisgood) - (1 — )
=1-e(1—Pr,pr(sisgood)
<l—e€
where the first inequality holds becausg, ,)..pz(#:(s) = a | sisbad <1 — ¢, and the second

inequality holds becauder, ;= (s is good < 1— £. This chain of inequalities clearly contradicts
the assumption of the lemma. O

The next two lemmas are the main tools used to prove Theorémtlie proofs of these lemmas, we
write 5@ to denote a trajectory, whera = (51, a1, ...,55,an) € (S x A)H. Also, letd P, denote

the probability measure induced on trajectories by follappolicyr, and letR(sa) = Zle R(5)
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denote the sum of the rewards of the states in trajeg@rymportantly, using these definitions we
have

Vir) = /ﬁR(m)dPﬂ.

The next lemma proves that if a deterministic policy “alni@girees with the expert's policy” in
every state and time step, then its value is not much worseaibe ofr”.

Lemma 2. Let# be a deterministic nonstationary policy. If for all stateand time stepswe have
78 (s,7(s)) > 1 —ethenV (7t) > V(rF) — eH? Rmax,

Proof. Say a trajectorya is goodif it is “consistent” with7 — that is,7(5;) = a, for all time steps
t — and thatsa is bad otherwise. We have

V(rP) = / R(3a)dP,x

sa

= / R(sa)dP,e + / R(sa)dP,=
sa good sa bad

< / R(3a)dP, s + eH* R™
sa good

< / R(sa)dP; + cH? R™
'sa good

= V(7) + eH?R™™

where the first inequality holds because, by the union boihd, assigns at most aH fraction
of its measure to bad trajectories, and the maximum rewaedtiafjectory isH R™**. The second
inequality holds because good trajectories are assignedsttas much measure B as by P, =,
becauser is deterministic. O

The next lemma proves a slightly different statement thamra 2: If a policy exactly agrees with
the expert’s policyr” in “almost” every state and time step, then its value is notimworse the
value ofr?.

Lemma 3. Let # be a nonstationary policy. If for all time steps we have
Pr, pe (Fe(s,") =7 (s,-)) = 1 —ethenV(7) > V(xF) — eH? R™,

Proof. Say a trajectorya is goodif 77 (5;,-) = 7(5,-) for all time steps, and thatsa is bad
otherwise. We have

V() /ﬁR(E)dPﬁ

/ R(sa)dP; + / R(sa)dPx
sa good sa bad

/ R(52)dP,s + / R(53)dP
sa good sa bad

/ R(53)dP,r — / R(53)dP, = + / R(3)dPs
sa Sa bad

sa bad

(7F) — eH* R™> 4 / R(3a)dP;

Sa bad

Vv
> V(TrE) — eH?R™ax,

The first inequality holds because, by the union bouRg; assigns at most an/ fraction of
its measure to bad trajectories, and the maximum reward @jectory isH R™**. The second
inequality holds by our assumption that all rewards are egative. O

We are now ready to combine the previous lemmas and proverdimeb.



Proof of Theorem 1Since the apprentice’s poliey” satisfies Assumption 1, by Lemma 1 we can
choose any; € (0, 1] and have

Propp (f (5,7 (s) > 1 —e1) > 1 - £,

€1
Now construct a “dummy” policyr as follows: For all time steps let #,(s, ) = 7 (s, -) for any
states whererZ (s, {1 (s)) > 1 — ¢;. On all other states, let; (s, 7;*(s)) = 1. By Lemma 2

V() > V(#) — e H> R™™
and by Lemma 3
V(#) > V(n®) — S H2Rmex,
€1
Combining these inequalities yields
V(r) > V(nF) - <61 + 6) H? R™ax,
€1

Sincee; was chosen arbitrarily, we set = /¢, which maximizes this lower bound. O

6 Guarantee for Good Expert

Theorem 1 makes no assumptions about the value of the expelity. However, in many cases it
may be reasonable to assume that the expert is followingraomtianal policy (indeed, if she is not,
then we should question the decision to select her as antexpée next theorem shows that the
dependence df () on the classification erreris significantly better when the expert is following
a near-optimal policy.

Theorem 2. If Assumption 1 holds, the¥i(7*) > V(7¥) — (4eH3R™™ + A, r), whereA = £
V(n*) — V() is thesuboptimalityof the expert's policyr”.

Note that the bound in Theorem 2 varies witand not with,/e. We can interpret this bound as
follows: If our goal is to learn an apprentice policy whosé&ureds within A .= of the expert policy’s
value, we can double our progress towards that goal by lwathi@ classification error rate. On the
other hand, Theorem 2 suggests that the error rate must beagdy a factor of four.

To see why a near-optimal expert policy should yield a wedk@endence on consider an expert
policy 7F that is an optimal policy, but in every statec S selects one of two actions; and
a3 uniformly at random. A deterministic apprentice poliey that closely imitates the expert will
either setr4(s) = ag or4(s) = a3, but in either case the classification error will not be lésst
%. However, sincer” is optimal, both actiona; anda3 must be optimal actions for stateand so

the apprentice policy* will be optimal as well.

Our strategy for proving Theorem 2 is to replace Lemma 2 witfffarent result — namely, Lemma
6 below — that has a much weaker dependence on the classifi@tiore whenA = is small.

To help us prove Lemma 6, we will first need to define severaluligmlicies. The next several
definitions will be with respect to an arbitrary nonstatignaase policyr?; in the proof of Theorem
2, we will make a particular choice for the base policy.

Fix a deterministic nonstationary poliay’ < that satisfies
(s, 7 (s) > 1—e
for somee € (0, 1] and all states and time steps. Such a policy always exists by lettiag= 1, but
if € is close to zero, then®: is a deterministic policy that “almost” agrees witl¥ in every state
and time step. Of course, depending on the choicefafa policy 72¢ may not exist for smalt,
but let us set aside that concern for the moment; in the pribdheorem 2, the base poliey® will
be chosen so thatcan be as small as we like.
Having thus definedr®<, we definer?\c as follows: For all states € S and time steps, if
7B (s, mB<(s)) < 1, then let
0 it 72(s) = a
B\e _
Ty (S,CL) - 7(?(5’@)

otherwise
Za,;ﬁ‘ﬂ'tB'e(s) WtB(S, a/)
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for all actionsa € A, and otherwise IetrtB\E(s,a) = 1| for all « € A. In other words, in each

— TA]
states and time steg, the distributiomrf\é(s, -) is obtained by proportionally redistributing the

probability assigned to actiom”*(s) by the distributionZ (s, -) to all other actions. The case
wherer 5 (s, -) assigns all probability to action”*“(s) is treated specially, but as will be clear from
the proof of Lemma 4, it is actually immaterial how the distition wf\e(s, -) is defined in these
cases; we choose the uniform distribution for definiteness.

Let 75+ be a deterministic policy defined by

2% (s) = argmax E {Viﬁ(s’)

s ~0(s,a, )]

for all statess € S and time steps. In other wordsy”* (s) is the best action in stateat timet,
assuming that the policy? is followed thereafter.

The next definition requires the use wixed policies A mixed policy consists of a finite set of
deterministic nonstationary policies, along with a dimition over those policies; the mixed policy
is followed by drawing a single policy according to the dimition in the initial time step, and
following that policy exclusively thereafter. More fornhgla mixed policy is defined by a set of
ordered pairg (7%, A(i)) }}¥, for some finiteV, where eacltomponent policy:’ is a deterministic

nonstationary policyzfi1 A(7) = TandA(z) > 0 foralli € [N].

We define a mixed policy?-<* as follows: For each component poliey and each time stefy
eitherr = wf’e or! = 72T, There is one component policy for each possible choice;yieids

N = 2/Hl component policies. And the probabilityi) assigned to each component policyis
Ai) = (1 — e)*DH k@) wherek(i) is the number of times stepgor which 7 = 7+

Having established these definitions, we are now ready teepseveral lemmas that will help us
prove Theorem 2.

Lemma 4. V(785t) > vV (rP).

Proof. The proof will be by backwards induction @n CIearIyVH’?B’S'+ (s) = VH’TB(s) for all states
s, since the value functiol}; for any policyr depends only on the reward functiéh Now suppose

for induction that‘/tiBl'E'+(s) > thl(s) for all statess. Then for all states

~B,e,+ B

VI () = Ris) + B [VETT ) | @ ~ 7P, ~ 05, )

> R(s)+ B [VIL(s) | @ ~ 757 (s,), 8 ~ 6(s,0', )|

B

= R(s) + (1= O V() | & ~ 00,77 “(5), )| + B [VELS) | 5 ~ 005,787 (5), )

> R(s) + P (s, 70°(5) - B [V ()

S~ 05,7 (5), )|
+ (1= P (s.n(s) - B [V (s)
s~ 05,7 (s), )|

+ (1=7 (s, () - B [VEa(s) [ @~ nf (s, ), ' ~ (s, )]

= R(s) + B [V75(5))

S~ 05, (s), )]

> R(s) + i (s,70(3)) - E [V ()

a ~7P(s),s ~0(sd, )}
B
=V (s).

The first equality holds for all policies, and follows straightforwardly from the definition &f".
The rest of the derivation uses, in order: the inductive hiygsis; the definition of Z-<+; property
of 75 and the fact that”* (s) is the best action with respect t@ﬂ; the fact thatr” " (s) is the

best action with respect M;fl; the definition ofrZ\¢; the definition oth”B (). O

Lemma5s. V(72:4%) < (1 — eH)V(nB€) + eHV (7).



Proof. Sincer? <7 is a mixed policy, by the Iinearity of expectation we have

B J€, + Z )\
where eachr’ is a component policy of B¢+ andA(z) is its associated probability. Therefore
#B.e + Z )\
< (1 — V(P )+ (1 - (1 -V (x")
< (1 —eH)V(xBe) +eHV (7).

Here we used the fact that probability — ¢) > 1 — ¢H is assigned to a component policy that is
identical tor?-<, and the value of any component policy is at miggt™). O

Lemma 6. If e < £, thenV (75:) > V(nP) — ;H-A 5

Proof. Combining Lemmas 4 and 5 yields
(1 —eH)V (7P + eHV (1*) > V(xB).
And via algebraic manipulation we have
(1 —eH)V (7)) 4 eHV (1*) > V(xP)
= (1-eH)V (P > (1 - eH)V(xB) + eHV (rP) — eHV (7¥)
= (1-eH)V(xP) > (1 - eH)V(rP) - eHA,»
eH
1—€eH

In the last line, we were able to divide By — e /) without changing the direction of the inequality
because of our assumption that % O

= V(B >Vv(nP) - ALs.

We are now ready to combine the previous lemmas and proverdime?.

Proof of Theorem 2Since the apprentice’s poliey” satisfies Assumption 1, by Lemma 1 we can
choose any; € (0, ;) and have

Pro pe (nf(s,m(5)) > 1—e1) > 1 - &

€1

As in the proof of Theorem 1, let us construct a “dummy” policyas follows: For all time steps
t, let #4(s,-) = wF(s,-) for any states whererZ (s, 7{'(s)) > 1 — ¢;. On all other states, let
#t:(s, 7 (s)) = 1. By Lemma 3 we have

V(#) > V(nP) — S H2Rmax, 1)

€1
SubstitutingV (7%) = V(7*) — A,s andV (7) = V(7*) — A; and rearranging yields
As < Ap + = H2RmEX, @)
€1

Now observe that, if we set the base polie§ = #, then by definition# is a valid choice for
w8 And sincee; < - we have

A ~ 61H
> —
V(r?) > V(n) T
~ aH € o
>Vi(n)— A — H*R™x
> V(#) 1_61H< nE )
E € 2 pmax 61H € 2 pmax
>V(r")— —H*R™ — Ae+—H"R 3)
€1 1-— 61H €1

where we used Lemma 6, (2) and (1), in that order. Letting ﬁ proves the theorem. O
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