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Abstract

We provide new theoretical results for apprenticeship learning, a variant of rein-
forcement learning in which the true reward function is unknown, and the goal
is to perform well relative to an observed expert. We study a common approach
to learning from expert demonstrations: using a classification algorithm to learn
to imitate the expert’s behavior. Although this straightforward learning strategy
is widely-used in practice, it has been subject to very little formal analysis. We
prove that, if the learned classifier has error rateǫ, the difference between the
value of the apprentice’s policy and the expert’s policy isO(

√
ǫ). Further, we

prove that this difference is onlyO(ǫ) when the expert’s policy is close to optimal.
This latter result has an important practical consequence:Not only does imitating
a near-optimal expert result in a better policy, but far fewer demonstrations are
required to successfully imitate such an expert. This suggests an opportunity for
substantial savings whenever the expert is known to be good,but demonstrations
are expensive or difficult to obtain.

1 Introduction

Apprenticeship learningis a variant of reinforcement learning, first introduced by Abbeel & Ng [1]
(see also [2, 3, 4, 5, 6]), designed to address the difficulty of correctly specifying the reward function
in many reinforcement learning problems. The basic idea underlying apprenticeship learning is that
a learning agent, called theapprentice, is able to observe another agent, called theexpert, behaving
in a Markov Decision Process (MDP). The goal of the apprentice is to learn a policy that is at least
as good as the expert’s policy, relative to anunknownreward function. This is a weaker requirement
than the usual goal in reinforcement learning, which is to find a policy that maximizes reward.
The development of the apprenticeship learning framework was prompted by the observation that,
although reward functions are often difficult to specify, demonstrations of good behavior by an
expert are usually available. Therefore, by observing sucha expert, one can infer information about
the true reward function without needing to specify it.

Existing apprenticeship learning algorithms have a numberof limitations. For one, they typically
assume that the true reward function can be expressed as a linear combination of a set of known fea-
tures. However, there may be cases where the apprentice is unwilling or unable to assume that the
rewards have this structure. Additionally, most formulations of apprenticeship learning are actually
harder than reinforcement learning; apprenticeship learning algorithms typically invoke reinforce-
ment learning algorithms as subroutines, and their performance guarantees depend strongly on the
quality of these subroutines. Consequently, these apprenticeship learning algorithms suffer from the
same challenges of large state spaces, exploration vs. exploitation trade-offs, etc., as reinforcement

∗Work done while the author was a student at Princeton University.
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learning algorithms. This fact is somewhat contrary to the intuition that demonstrations from an
expert — especially a good expert — should make the problem easier, not harder.

Another approach to using expert demonstrations that has received attention primarily in the empir-
ical literature is to passivelyimitatethe expert using a classification algorithm (see [7, Section4] for
a comprehensive survey). Classification is the most well-studied machine learning problem, and it
is sensible to leverage our knowledge about this “easier” problem in order to solve a more “difficult”
one. However, there has been little formal analysis of this straightforward learning strategy (the
main recent example is Ross & Bagnell [8], discussed below).In this paper, we consider a setting
in which an apprentice uses a classification algorithm to passively imitate an observed expert in an
MDP, and we bound the difference between the value of the apprentice’s policy and the value of
the expert’s policy in terms of the accuracy of the learned classifier. Put differently, we show that
apprenticeship learning can bereducedto classification. The idea of reducing one learning problem
to another was first proposed by Zadrozny & Langford [9].

Our main contributions in this paper are a pair of theoretical results. First, we show that the differ-
ence between the value of the apprentice’s policy and the expert’s policy isO(

√
ǫ),1 whereǫ ∈ (0, 1]

is the error of the learned classifier. Secondly, and perhapsmore interestingly, we extend our first
result to prove that the difference in policy values is onlyO(ǫ) when the expert’s policy is close to
optimal. Of course, if one could perfectly imitate the expert, then naturally a near-optimal expert
policy is preferred. But our result implies something further: that near-optimal experts are actually
easierto imitate, in the sense that fewer demonstration are required to achieve the same performance
guarantee. This has important practical consequences. If one is certaina priori that the expert is
demonstrating good behavior, then our result implies that many fewer demonstrations need to be col-
lected than if this were not the case. This can yield substantial savings when expert demonstrations
are expensive or difficult to obtain.

2 Related Work

Several authors have reduced reinforcement learning to simpler problems. Bagnellet al [10] de-
scribed an algorithm for constructing a good nonstationarypolicy from a sequence of good “one-
step” policies. These policies are only concerned with maximizing reward collected in a single
time step, and are learned with the help of observations froman expert. Langford & Zadrozny
[11] reduced reinforcement learning to a sequence of classification problems (see also Blatt & Hero
[12]), but these problems have an unusual structure, and theauthors are only able to provide a small
amount of guidance as to how data for these problems can be collected. Kakade & Langford [13]
reduced reinforcement learning to regression, but required additional assumptions about how easily
a learning algorithm can access the entire state space. Importantly, all this work makes the standard
reinforcement learning assumptions that the true rewards are known, and that a learning algorithm
is able to interact directly with the environment. In this paper we are interested in settings where
the reward function is not known, and where the learning algorithm is limited to passively observing
an expert. Concurrently to this work, Ross & Bagnell [8] havedescribed an approach to reducing
imitation learning to classification, and some of their analysis resembles ours. However, their frame-
work requires somewhat more than passive observation of theexpert, and is focused on improving
the sensitivity of the reduction to the horizon length, not the classification error. They also assume
that the expert follows a deterministic policy, and assumption we do not make.

3 Preliminaries

We consider afinite-horizonMDP, with horizonH. We will allow the state spaceS to be infinite,
but assume that the action spaceA is finite. Letα be the initial state distribution, andθ the transition
function, whereθ(s, a, ·) specifies the next-state distribution from states ∈ S under actiona ∈ A.
The only assumption we make about theunknownreward functionR is that0 ≤ R(s) ≤ Rmax for
all statess ∈ S, whereRmax is a finite upper bound on the reward of any state.

1The big-O notation is concealing a polynomial dependence on other problem parameters. We give exact
bounds in the body of the paper.
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We introduce some notation and definitions regarding policies. A policyπ is stationaryif it is a
mapping from states to distributions over actions. In this case,π(s, a) denotes the probability of
taking actiona in states. LetΠ be the set of all stationary policies. A policyπ is nonstationaryif it
belongs to the setΠH = Π× · · · (H times)· · · ×Π . In this case,πt(s, a) denotes the probability of
taking actiona in states at timet. Also, if π is nonstationary, thenπt refers to the stationary policy
that is equal to thetth component ofπ. A (stationary or nonstationary) policyπ is deterministicif
each one of its action distributions is concentrated on a single action. If a deterministic policyπ is
stationary, thenπ(s) is the action taken in states, and ifπ is nonstationary, theπt(s) is the action
taken in states at timet.

We define the value functionV π
t (s) for a nonstationary policyπ at timet as follows in the usual

manner:

V π
t (s) , E

[

H
∑

t′=t

R(st′)
∣

∣

∣
st = s, at′ ∼ πt′(st′ , ·), st′+1 ∼ θ(st′ , at′ , ·)

]

.

SoV π
t (s) is the expected cumulative reward for following policyπ when starting at states and time

stept. Note that there are several value functions per nonstationary policy, one for each time stept.
The value of a policy is defined to beV (π) , E[V π

1 (s) | s ∼ α(·)], and an optimal policyπ∗ is one
that satisfiesπ∗ , argmaxπ V (π).

We writeπE to denote the (possibly nonstationary) expert policy, andV E
t (s) as an abbreviation for

V πE

t (s). Our goal is to find a nonstationary apprentice policyπA such thatV (πA) ≥ V (πE). Note
that the values of these policies are with respect to theunknownreward function.

Let Dπ
t be the distribution on state-action pairs at timet under policyπ. In other words, a sample

(s, a) is drawn fromDπ
t by first drawings1 ∼ α(·), then following policyπ for time steps1 through

t, which generates a trajectory(s1, a1, . . . , st, at), and then letting(s, a) = (st, at). We writeDE
t as

an abbreviation forDπE

t . In a minor abuse of notation, we writes ∼ Dπ
t to mean: draw state-action

pair (s, a) ∼ Dπ
t , and discarda.

4 Details and Justification of the Reduction

Our goal is to reduce apprenticeship learning to classification, so let us describe exactly how this
reduction is defined, and also justify the utility of such a reduction.

In a classification problem, a learning algorithm is given a training set〈(x1, y1), . . . , (xm, ym)〉,
where each labeled example(xi, yi) ∈ X ×Y is drawn independently from a distributionD onX ×
Y. HereX is the example space andY is the finite set of labels. The learning algorithm is also given
the definition of a hypothesis classH, which is a set of functions mappingX to Y. The objective
of the learning algorithm is to find a hypothesish ∈ H such that the errorPr(x,y)∼D(h(x) 6= y) is
small.

For our purposes, the hypothesis classH is said to bePAC-learnableif there exists a learning
algorithmA such that, wheneverA is given a training set of sizem = poly( 1

δ
, 1
ǫ
), the algorithm

runs forpoly( 1
δ
, 1
ǫ
) steps and outputs a hypothesisĥ ∈ H such that, with probability at least1− δ,

we havePr(x,y)∼D

(

ĥ(x) 6= y
)

≤ ǫ∗H,D + ǫ. Hereǫ∗H,D = infh∈H Pr(x,y)∼D(h(x) 6= y) is the

error of the best hypothesis inH. The expressionpoly( 1
δ
, 1
ǫ
) will typically also depend on other

quantities, such as the number of labels|Y| and theVC-dimensionof H [14], but this dependence is
not germane to our discussion.

The existence of PAC-learnable hypothesis classes is the reason that reducing apprenticeship learn-
ing to classification is a sensible endeavor. Suppose that the apprentice observesm independent
trajectories from the expert’s policyπE , where theith trajectory is a sequence

(

si1, a
i
1, . . . , s

i
H , aiH

)

.
The key is to note that each(sit, a

i
t) can be viewed as an independent sample from the distribution

DE
t . Now consider a PAC-learnable hypothesis classH, whereH contains a set of functions map-

ping the state spaceS to the finite action spaceA. If m = poly( 1
Hδ

, 1
ǫ
), then for each time step

t, the apprentice can use a PAC learning algorithm forH to learn a hypothesiŝht ∈ H such that,

with probability at least1− 1
Hδ

, we havePr(s,a)∼DE
t

(

ĥt(s) 6= a
)

≤ ǫ∗H,DE
t
+ ǫ. And by the union
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bound, this inequality holds forall t with probability at least1−δ. If eachǫ∗
H,DE

t

+ǫ is small, then a

natural choice for the apprentice’s policyπA is to setπA
t = ĥt for all t. This policy uses the learned

classifiers to imitate the behavior of the expert.

In light of the preceding discussion, throughout the remainder of this paper we make the following
assumption about the apprentice’s policy.

Assumption 1. The apprentice policy πA is a deterministic policy that satisfies
Pr(s,a)∼DE

t
(πA

t (s) 6= a) ≤ ǫ for someǫ > 0 and all time stepst.

As we have shown, an apprentice policy satisfying Assumption 1 with smallǫ can be found with
high probability, provided that expert’s policy is well-approximated by a PAC-learnable hypothesis
class and that the apprentice is given enough trajectories from the expert. A reasonable intuition is
that the value of the policyπA in Assumption 1 is nearly as high as the value of the policyπE ; the
remainder of this paper is devoted to confirming this intuition.

5 Guarantee for Any Expert

If the error rateǫ in Assumption 1 is small, then the apprentice’s policyπA closely imitates the
expert’s policyπE , and we might hope that this implies thatV (πA) is not much less thanV (πE).
This is indeed the case, as the next theorem shows.

Theorem 1. If Assumption 1 holds, thenV (πA) ≥ V (πE)− 2
√
ǫH2Rmax.

In a typical classification problem, it is assumed that the training and test examples are drawn from
the same distribution. The main challenge in proving Theorem 1 is that this assumption doesnothold
for the classification problems to which we have reduced the apprenticeship learning problem. This
is because, although each state-action pair(sit, a

i
t) appearing in an expert trajectory is distributed

according toDE
t , a state-action pair(st, at) visited by the apprentice’s policy may not follow this

distribution, since the behavior of the apprentice prior totime stept may not exactly match the
expert’s behavior. So our strategy for proving Theorem 1 will be to show that these differences do
not cause the value of the apprentice policy to degrade too much relative to the value of the expert’s
policy.

Before proceeding, we will show that Assumption 1 implies a condition that is, for our purposes,
more convenient.

Lemma 1. Let π̂ be a deterministic nonstationary policy. IfPr(s,a)∼DE
t
(π̂t(s) 6= a) ≤ ǫ, then for

all ǫ1 ∈ (0, 1] we havePrs∼DE
t

(

πE
t (s, π̂t(s)) ≥ 1− ǫ1

)

≥ 1− ǫ
ǫ1

Proof. Fix anyǫ1 ∈ (0, 1], and suppose for contradiction thatPrs∼DE
t

(

πE
t (s, π̂t(s)) ≥ 1− ǫ1

)

<

1− ǫ
ǫ1

. Say that a states is goodif πE
t (s, π̂t(s)) ≥ 1− ǫ1, and thats is badotherwise. Then

Pr(s,a)∼DE
t
(π̂t(s) = a) = Prs∼DE

t
(s is good) · Pr(s,a)∼DE

t
(π̂t(s) = a | s is good)

+ Prs∼DE
t
(s is bad) · Pr(s,a)∼DE

t
(π̂t(s) = a | s is bad)

≤ Prs∼DE
t
(s is good) · 1 + (1− Prs∼DE

t
(s is good)) · (1− ǫ1)

= 1− ǫ1(1− Prs∼DE
t
(s is good))

< 1− ǫ

where the first inequality holds becausePr(s,a)∼DE
t
(π̂t(s) = a | s is bad) ≤ 1− ǫ1, and the second

inequality holds becausePrs∼DE
t
(s is good) < 1− ǫ

ǫ1
. This chain of inequalities clearly contradicts

the assumption of the lemma.

The next two lemmas are the main tools used to prove Theorem 1.In the proofs of these lemmas, we
write sa to denote a trajectory, wheresa = (s̄1, ā1, . . . , s̄H , āH) ∈ (S ×A)H . Also, letdPπ denote
the probability measure induced on trajectories by following policyπ, and letR(sa) =

∑H
t=1 R(s̄t)
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denote the sum of the rewards of the states in trajectorysa. Importantly, using these definitions we
have

V (π) =

∫

sa

R(sa)dPπ.

The next lemma proves that if a deterministic policy “almost” agrees with the expert’s policyπE in
every state and time step, then its value is not much worse thevalue ofπE .

Lemma 2. Let π̂ be a deterministic nonstationary policy. If for all statess and time stepst we have
πE
t (s, π̂t(s)) ≥ 1− ǫ thenV (π̂) ≥ V (πE)− ǫH2Rmax.

Proof. Say a trajectorysa is goodif it is “consistent” withπ̂ — that is,π̂(s̄t) = āt for all time steps
t — and thatsa is badotherwise. We have

V (πE) =

∫

sa

R(sa)dPπE

=

∫

sa good
R(sa)dPπE +

∫

sa bad
R(sa)dPπE

≤
∫

sa good
R(sa)dPπE + ǫH2Rmax

≤
∫

sa good
R(sa)dPπ̂ + ǫH2Rmax

= V (π̂) + ǫH2Rmax

where the first inequality holds because, by the union bound,PπE assigns at most anǫH fraction
of its measure to bad trajectories, and the maximum reward ofa trajectory isHRmax. The second
inequality holds because good trajectories are assigned atleast as much measure byPπ̂ as byPπE ,
becausêπ is deterministic.

The next lemma proves a slightly different statement than Lemma 2: If a policy exactly agrees with
the expert’s policyπE in “almost” every state and time step, then its value is not much worse the
value ofπE .

Lemma 3. Let π̂ be a nonstationary policy. If for all time stepst we have
Prs∼DE

t

(

π̂t(s, ·) = πE
t (s, ·)

)

≥ 1− ǫ thenV (π̂) ≥ V (πE)− ǫH2Rmax.

Proof. Say a trajectorysa is good if πE
t (s̄t, ·) = π̂t(s̄t, ·) for all time stepst, and thatsa is bad

otherwise. We have

V (π̂) =

∫

sa

R(sa)dPπ̂

=

∫

sa good
R(sa)dPπ̂ +

∫

sa bad
R(sa)dPπ̂

=

∫

sa good
R(sa)dPπE +

∫

sa bad
R(sa)dPπ̂

=

∫

sa

R(sa)dPπE −
∫

sa bad
R(sa)dPπE +

∫

sa bad
R(sa)dPπ̂

≥ V (πE)− ǫH2Rmax +

∫

sa bad
R(sa)dPπ̂

≥ V (πE)− ǫH2Rmax.

The first inequality holds because, by the union bound,PπE assigns at most anǫH fraction of
its measure to bad trajectories, and the maximum reward of a trajectory isHRmax. The second
inequality holds by our assumption that all rewards are nonnegative.

We are now ready to combine the previous lemmas and prove Theorem 1.
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Proof of Theorem 1.Since the apprentice’s policyπA satisfies Assumption 1, by Lemma 1 we can
choose anyǫ1 ∈ (0, 1] and have

Prs∼DE
t

(

πE
t (s, π

A
t (s)) ≥ 1− ǫ1

)

≥ 1− ǫ
ǫ1
.

Now construct a “dummy” policŷπ as follows: For all time stepst, let π̂t(s, ·) = πE
t (s, ·) for any

states whereπE
t (s, π

A
t (s)) ≥ 1− ǫ1. On all other states, let̂πt(s, π

A
t (s)) = 1. By Lemma 2

V (πA) ≥ V (π̂)− ǫ1H
2Rmax

and by Lemma 3

V (π̂) ≥ V (πE)− ǫ

ǫ1
H2Rmax.

Combining these inequalities yields

V (πA) ≥ V (πE)−
(

ǫ1 +
ǫ

ǫ1

)

H2Rmax.

Sinceǫ1 was chosen arbitrarily, we setǫ1 =
√
ǫ, which maximizes this lower bound.

6 Guarantee for Good Expert

Theorem 1 makes no assumptions about the value of the expert’s policy. However, in many cases it
may be reasonable to assume that the expert is following a near-optimal policy (indeed, if she is not,
then we should question the decision to select her as an expert). The next theorem shows that the
dependence ofV (πA) on the classification errorǫ is significantly better when the expert is following
a near-optimal policy.

Theorem 2. If Assumption 1 holds, thenV (πA) ≥ V (πE)−
(

4ǫH3Rmax +∆πE

)

, where∆πE ,

V (π∗)− V (πE) is thesuboptimalityof the expert’s policyπE .

Note that the bound in Theorem 2 varies withǫ and not with
√
ǫ. We can interpret this bound as

follows: If our goal is to learn an apprentice policy whose value is within∆πE of the expert policy’s
value, we can double our progress towards that goal by halving the classification error rate. On the
other hand, Theorem 2 suggests that the error rate must be reduced by a factor of four.

To see why a near-optimal expert policy should yield a weakerdependence onǫ, consider an expert
policy πE that is an optimal policy, but in every states ∈ S selects one of two actionsas1 and
as2 uniformly at random. A deterministic apprentice policyπA that closely imitates the expert will
either setπA(s) = as1 or πA(s) = as2, but in either case the classification error will not be less than
1
2 . However, sinceπE is optimal, both actionsas1 andas2 must be optimal actions for states, and so
the apprentice policyπA will be optimal as well.

Our strategy for proving Theorem 2 is to replace Lemma 2 with adifferent result — namely, Lemma
6 below — that has a much weaker dependence on the classification errorǫ when∆πE is small.

To help us prove Lemma 6, we will first need to define several useful policies. The next several
definitions will be with respect to an arbitrary nonstationary base policyπB ; in the proof of Theorem
2, we will make a particular choice for the base policy.

Fix a deterministic nonstationary policyπB,ǫ that satisfies

πB
t (s, πB,ǫ

t (s)) ≥ 1− ǫ

for someǫ ∈ (0, 1] and all statess and time stepst. Such a policy always exists by lettingǫ = 1, but
if ǫ is close to zero, thenπB,ǫ is a deterministic policy that “almost” agrees withπB in every state
and time step. Of course, depending on the choice ofπB, a policyπB,ǫ may not exist for smallǫ,
but let us set aside that concern for the moment; in the proof of Theorem 2, the base policyπB will
be chosen so thatǫ can be as small as we like.

Having thus definedπB,ǫ, we defineπB\ǫ as follows: For all statess ∈ S and time stepst, if
πB
t (s, πB,ǫ(s)) < 1, then let

π
B\ǫ
t (s, a) =















0 if πB,ǫ
t (s) = a

πB
t (s, a)

∑

a′ 6=π
B,ǫ
t (s) π

B
t (s, a′)

otherwise
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for all actionsa ∈ A, and otherwise letπB\ǫ
t (s, a) = 1

|A| for all a ∈ A. In other words, in each

states and time stept, the distributionπB\ǫ
t (s, ·) is obtained by proportionally redistributing the

probability assigned to actionπB,ǫ
t (s) by the distributionπB

t (s, ·) to all other actions. The case
whereπB

t (s, ·) assigns all probability to actionπB,ǫ
t (s) is treated specially, but as will be clear from

the proof of Lemma 4, it is actually immaterial how the distributionπ
B\ǫ
t (s, ·) is defined in these

cases; we choose the uniform distribution for definiteness.

Let πB+ be a deterministic policy defined by

πB+
t (s) = argmax

a
E
[

V πB

t+1(s
′)
∣

∣

∣
s′ ∼ θ(s, a, ·)

]

for all statess ∈ S and time stepst. In other words,πB+
t (s) is the best action in states at timet,

assuming that the policyπB is followed thereafter.

The next definition requires the use ofmixed policies. A mixed policy consists of a finite set of
deterministic nonstationary policies, along with a distribution over those policies; the mixed policy
is followed by drawing a single policy according to the distribution in the initial time step, and
following that policy exclusively thereafter. More formally, a mixed policy is defined by a set of
ordered pairs{(πi, λ(i))}Ni=1 for some finiteN , where eachcomponent policyπi is a deterministic
nonstationary policy,

∑N
i=1 λ(i) = 1 andλ(i) ≥ 0 for all i ∈ [N ].

We define a mixed policỹπB,ǫ,+ as follows: For each component policyπi and each time stept,
eitherπi

t = π
B,ǫ
t or πi

t = πB+
t . There is one component policy for each possible choice; this yields

N = 2|H| component policies. And the probabilityλ(i) assigned to each component policyπi is
λ(i) = (1− ǫ)k(i)ǫH−k(i), wherek(i) is the number of times stepst for whichπi

t = π
B,ǫ
t .

Having established these definitions, we are now ready to prove several lemmas that will help us
prove Theorem 2.

Lemma 4. V (π̃B,ǫ,+) ≥ V (πB).

Proof. The proof will be by backwards induction ont. ClearlyV π̃B,ǫ,+

H (s) = V πB

H (s) for all states
s, since the value functionV π

H for any policyπ depends only on the reward functionR. Now suppose
for induction thatV π̃B,ǫ,+

t+1 (s) ≥ V πB

t+1(s) for all statess. Then for all statess

V π̃B,ǫ,+

t (s) = R(s) + E
[

V π̃B,ǫ,+

t+1 (s′)
∣

∣

∣
a′ ∼ π̃

B,ǫ,+
t (s, ·), s′ ∼ θ(s, a′, ·)

]

≥ R(s) + E
[

V πB

t+1(s
′)
∣

∣

∣
a′ ∼ π̃

B,ǫ,+
t (s, ·), s′ ∼ θ(s, a′, ·)

]

= R(s) + (1− ǫ)E
[

V πB

t+1(s
′)
∣

∣

∣
s′ ∼ θ(s, πB,ǫ

t (s), ·)
]

+ ǫE
[

V πB

t+1(s
′)
∣

∣

∣
s′ ∼ θ(s, πB+

t (s), ·)
]

≥ R(s) + πB
t (s, πB,ǫ

t (s)) · E
[

V πB

t+1(s
′)
∣

∣

∣
s′ ∼ θ(s, πB,ǫ

t (s), ·)
]

+
(

1− πB
t (s, πB,ǫ

t (s))
)

· E
[

V πB

t+1(s
′)
∣

∣

∣
s′ ∼ θ(s, πB+

t (s), ·)
]

≥ R(s) + πB
t (s, πB,ǫ

t (s)) · E
[

V πB

t+1(s
′)
∣

∣

∣
s′ ∼ θ(s, πB,ǫ

t (s), ·)
]

+
(

1− πB
t (s, πB,ǫ

t (s))
)

· E
[

V πB

t+1(s
′)
∣

∣

∣
a′ ∼ π

B\ǫ
t (s, ·), s′ ∼ θ(s, a′, ·)

]

= R(s) + E
[

V πB

t+1(s
′)
∣

∣

∣
a′ ∼ πB

t (s), s′ ∼ θ(s, a′, ·)
]

= V πB

t (s).

The first equality holds for all policiesπ, and follows straightforwardly from the definition ofV π
t .

The rest of the derivation uses, in order: the inductive hypothesis; the definition of̃πB,ǫ,+; property
of πB,ǫ and the fact thatπB+

t (s) is the best action with respect toV πB

t+1; the fact thatπB+
t (s) is the

best action with respect toV πB

t+1; the definition ofπB\ǫ; the definition ofV πB

t (s).

Lemma 5. V (π̃B,ǫ,+) ≤ (1− ǫH)V (πB,ǫ) + ǫHV (π∗).
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Proof. Sinceπ̃B,ǫ,+ is a mixed policy, by the linearity of expectation we have

V (π̃B,ǫ,+) =
N
∑

i=1

λ(i)V (πi)

where eachπi is a component policy of̃πB,ǫ,+ andλ(i) is its associated probability. Therefore

V (π̃B,ǫ,+) =
∑

i

λ(i)V (πi)

≤ (1− ǫ)HV (πB,ǫ) + (1− (1− ǫ)H)V (π∗)

≤ (1− ǫH)V (πB,ǫ) + ǫHV (π∗).

Here we used the fact that probability(1− ǫ)H ≥ 1− ǫH is assigned to a component policy that is
identical toπB,ǫ, and the value of any component policy is at mostV (π∗).

Lemma 6. If ǫ < 1
H

, thenV (πB,ǫ) ≥ V (πB)− ǫH
1−ǫH

∆πB .

Proof. Combining Lemmas 4 and 5 yields

(1− ǫH)V (πB,ǫ) + ǫHV (π∗) ≥ V (πB).

And via algebraic manipulation we have

(1− ǫH)V (πB,ǫ) + ǫHV (π∗) ≥ V (πB)

⇒ (1− ǫH)V (πB,ǫ) ≥ (1− ǫH)V (πB) + ǫHV (πB)− ǫHV (π∗)

⇒ (1− ǫH)V (πB,ǫ) ≥ (1− ǫH)V (πB)− ǫH∆πB

⇒ V (πB,ǫ) ≥ V (πB)− ǫH

1− ǫH
∆πB .

In the last line, we were able to divide by(1− ǫH) without changing the direction of the inequality
because of our assumption thatǫ < 1

H
.

We are now ready to combine the previous lemmas and prove Theorem 2.

Proof of Theorem 2.Since the apprentice’s policyπA satisfies Assumption 1, by Lemma 1 we can
choose anyǫ1 ∈ (0, 1

H
) and have

Prs∼DE
t

(

πE
t (s, π

A
t (s)) ≥ 1− ǫ1

)

≥ 1− ǫ
ǫ1
.

As in the proof of Theorem 1, let us construct a “dummy” policyπ̂ as follows: For all time steps
t, let π̂t(s, ·) = πE

t (s, ·) for any states whereπE
t (s, π

A
t (s)) ≥ 1 − ǫ1. On all other states, let

π̂t(s, π
A
t (s)) = 1. By Lemma 3 we have

V (π̂) ≥ V (πE)− ǫ

ǫ1
H2Rmax. (1)

SubstitutingV (πE) = V (π∗)−∆πE andV (π̂) = V (π∗)−∆π̂ and rearranging yields

∆π̂ ≤ ∆πE +
ǫ

ǫ1
H2Rmax. (2)

Now observe that, if we set the base policyπB = π̂, then by definitionπA is a valid choice for
πB,ǫ1 . And sinceǫ1 < 1

H
we have

V (πA) ≥ V (π̂)− ǫ1H

1− ǫ1H
∆π̂

≥ V (π̂)− ǫ1H

1− ǫ1H

(

∆πE +
ǫ

ǫ1
H2Rmax

)

≥ V (πE)− ǫ

ǫ1
H2Rmax − ǫ1H

1− ǫ1H

(

∆πE +
ǫ

ǫ1
H2Rmax

)

(3)

where we used Lemma 6, (2) and (1), in that order. Lettingǫ1 = 1
2H proves the theorem.
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