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1 The MWAL Algorithm

For reference, the MWAL algorithm from the main paper is repeated below.

Algorithm 1 The MWAL algorithm

1: Given: An MDP\R M and an estimate of the expert’s feature expectationsµ̂E .

2: Let β =

(
1 +

√
2 ln k

T

)−1

.

3: DefineG̃(i,µ) , ((1 − γ)(µ(i) − µ̂E(i)) + 2)/4, whereµ ∈ R
k.

4: Initialize W (1)(i) = 1 for i = 1, . . . , k.
5: for t = 1, . . . , T do

6: Setw(t)(i) = W (t)(i)
P

i
W (t)(i)

for i = 1, . . . , k.

7: Compute anǫP -optimal policyπ̂(t) for M with respect to reward functionR(s) = w
(t) ·φφφ(s).

8: Compute anǫF -good estimatêµ(t) of µ(t) = µ(π̂(t)).
9: W (t+1)(i) = W (t)(i) · exp(ln(β) · G̃(i, µ̂(t))) for i = 1, . . . , k.

10: end for
11: Post-processing: Return the mixed policyψ that assigns probability1

T
to π̂(t), for all t ∈

{1, . . . , T}.

1.1 Differences betweenG and G̃

In the main paper, Algorithm 1 was motivated by appealing to the game matrix

G(i, j) = µj(i) − µE(i),

whereµj are the feature expectations of thejth deterministic policy. However, the algorithm actu-
ally uses

G̃(i,µ) = ((1 − γ)(µ(i) − µ̂E(i)) + 2)/4

The rationale behind each of the differences betweenG andG̃ follows.

• G̃ depends on̂µE instead ofµE becauseµE is unknown and must be estimated. We
account for the error of this estimate in the proof of Theorem2.

• G̃ is defined in terms of arbitrary feature expectationsµ instead ofµj because lines 7 and 8
of Algorithm 1 produce approximations, and henceµ̂(t) may not be the feature expectations
of any deterministic policy. The results of Freund and Schapire [2] that we rely on are not
affected by this change.
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• G̃ is shifted and scaled so thatG̃(i,µ) ∈ [0, 1]. This is necessary in order to directly apply
the main result of Freund and Schapire [2].

The last point relies on a simplifying assumption. Recall that if µ is a vector of feature expectations
for some policy, thenµ ∈ [0, 1

1−γ
]k, becauseφφφ(s) ∈ [0, 1]k for all s. For simplicity, we will

assume that this holds even ifµ is anestimateof a vector of feature expectations. (This is without
loss of generality: if it does not hold, we can trimµ so that it falls within the desired range without
increasing the error in the estimate.) Therefore(µ−µ̂E) ∈ [ −2

1−γ
, 2

1−γ
]k, and hencẽG(i,µ) ∈ [0, 1].

2 Proof of Theorem 2

In this section we prove Theorem 2 from the main paper.

Theorem 2. Given an MDP\R M , and m independent trajectories from an expert’s policyπE .
Suppose we execute the MWAL algorithm forT iterations. Letψ be the mixed policy returned
by the algorithm. LetǫF and ǫP be the approximation errors from lines 7 and 8 of the al-
gorithm. LetH ≥ (1/(1 − γ)) ln(1/(ǫH(1 − γ))) be the length of each sample trajectory.
Let ǫR = minw∈Sk maxs |R∗(s) − w · φφφ(s)| be the representation error of the features. Let
v∗ = maxψ∈Ψ minw∈Sk [w · µ(ψ) − w · µE ] be the game value. Then in order for

V (ψ) ≥ V (πE) + v∗ − ǫ (1)

to hold with probability at least1 − δ, it suffices that

T ≥
9 ln k

2(ǫ′(1 − γ))2
(2)

m ≥
2

(ǫ′(1 − γ))2
ln

2k

δ
(3)

(4)

where

ǫ′ ≤
ǫ − (2ǫF + ǫP + 2ǫH + 2ǫR/(1 − γ))

3
. (5)

To prove Theorem 2, we will first need to prove several auxiliary results. Define

G̃(w,µ) ,

k∑

i=1

w(i) · G̃(i,µ).

Now we can directly apply the main result from Freund and Schapire [2], which we will call the
MW Theorem.

MW Theorem. At the end of the MWAL algorithm

1

T

T∑

t=1

G̃(w(t), µ̂(t)) ≤
1

T
min
w∈Sk

T∑

t=1

G̃(w, µ̂(t)) + ∆T

where

∆T =

√
2 ln k

T
+

ln k

T
.

Proof. Freund and Schapire [2].

The following corollary follows straightforwardly from the MW Theorem.

Corollary 1. At the end of the MWAL algorithm

1

T

T∑

t=1

[
w

(t) · µ̂(t) − w
(t) · µ̂E

]
≤

1

T
min
w∈Sk

T∑

t=1

[
w · µ̂(t) − w · µ̂E

]
+ ∆T
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The next lemma bounds the number of samples needed to makeµ̂E close toµE .

Lemma 1. Suppose the trajectory lengthH ≥ (1/(1−γ)) ln(1/(ǫH(1−γ))). For ‖µ̂E −µE‖∞ ≤
ǫ + ǫH to hold with probability at least1 − δ, it suffices that

m ≥
2

(ǫ(1 − γ))2
ln

(
2k

δ

)

Proof. This is a standard proof using Hoeffding’s inequality, similar to that found in Abbeel and Ng
[1]. However, care must be taken in one respect:µ̂E is not an unbiased estimate ofµE , because the
trajectories are truncated atH. So define

µH
E , E

[
H∑

t=0

γtφφφ(st)
∣∣∣ πE , θ,D

]
.

Then we have,

∀i ∈ [1, . . . , k] Pr(|µ̂E(i) − µH
E (i)| ≥ ǫ) ≤ 2 exp(−m(ǫ(1 − γ))2/2)

⇒ Pr(∃i ∈ [1, . . . , k] s.t. |µ̂E(i) − µH
E (i)| ≥ ǫ) ≤ 2k exp(−m(ǫ(1 − γ))2/2)

⇒ Pr(∀i ∈ [1, . . . , k], |µ̂E(i) − µH
E (i)| ≤ ǫ) ≥ 1 − 2k exp(−m(ǫ(1 − γ))2/2)

⇒ Pr(‖µ̂E − µH
E ‖∞ ≤ ǫ) ≥ 1 − 2k exp(−m(ǫ(1 − γ))2/2)

We used in order: Hoeffding’s inequality andµH
E ∈ [0, 1

1−γ
]k; the union bound; the probability of

disjoint events; the definition ofL∞ norm.

It is not hard to show that‖µH
E − µE‖∞ ≤ ǫH (see Kearns and Singh [4], Lemma 2). Hence if

m ≥ 2
(ǫ(1−γ))2 ln(2k

δ
), then with probabilty at least1 − δ we have

‖µ̂E − µE‖∞ ≤ ‖µ̂E − µH
E ‖∞ + ‖µH

E − µE‖∞ ≤ ǫ + ǫH .

The next lemma bounds the impact of “representation error”:it says that ifR∗(s) andw
∗ ·φφφ(s) are

not very different, then neither areV (ψ) andw
∗ · µ(ψ).

Lemma 2. If maxs |R∗(s) − w
∗ · φφφ(s)| ≤ ǫR, then|V (ψ) − w

∗ · µ(ψ)| ≤ ǫR

1−γ
for every MDP/R

M and mixed policyψ.

Proof.

|V (ψ) − w
∗ · µ(ψ)|

=

∣∣∣∣∣E
[

∞∑

t=0

γtR∗(st)

]
− E

[
∞∑

t=0

γt
w

∗ · φφφ(st)

]∣∣∣∣∣

=

∣∣∣∣∣ lim
H→∞

E

[
H∑

t=0

γtR∗(st)

]
− lim

H→∞
E

[
H∑

t=0

γt
w

∗ · φφφ(st)

]∣∣∣∣∣

=

∣∣∣∣∣ lim
H→∞

E

[
H∑

t=0

γt(R∗(st) − w
∗ · φφφ(st))

]∣∣∣∣∣

≤ lim
H→∞

E

[
H∑

t=0

γt|R∗(st) − w
∗ · φφφ(st)|

]

≤
ǫR

1 − γ

We are now ready to prove Theorem 2. The proof closely followsSection 2.5 of Freund and Schapire
[2].
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Proof of Theorem 2.Let w = 1
T

∑T
t=1 w

(t). Then we have

v∗ = max
ψ∈Ψ

min
w∈Sk

[w · µ(ψ) − w · µE ]

= min
w∈Sk

max
ψ∈Ψ

[w · µ(ψ) − w · µE ] (6)

≤ min
w∈Sk

max
ψ∈Ψ

[w · µ(ψ) − w · µ̂E ] + ǫ′ + ǫH (7)

≤ max
ψ∈Ψ

[w · µ(ψ) − w · µ̂E ] + ǫ′ + ǫH

= max
ψ∈Ψ

1

T

T∑

t=1

[
w

(t) · µ(ψ) − w
(t) · µ̂E

]
+ ǫ′ + ǫH (8)

≤
1

T

T∑

t=1

max
ψ∈Ψ

[
w

(t) · µ(ψ) − w
(t) · µ̂E

]
+ ǫ′ + ǫH

≤
1

T

T∑

t=1

[
w

(t) · µ(π̂(t)) − w
(t) · µ̂E

]
+ ǫP + ǫ′ + ǫH (9)

≤
1

T

T∑

t=1

[
w

(t) · µ̂(t) − w
(t) · µ̂E

]
+ ǫF + ǫP + ǫ′ + ǫH (10)

≤
1

T
min
w∈Sk

T∑

t=1

[
w · µ̂(t) − w · µ̂E

]
+ ∆T + ǫF + ǫP + ǫ′ + ǫH (11)

≤
1

T
min
w∈Sk

T∑

t=1

[
w · µ(π̂(t)) − w · µ̂E

]
+ ∆T + 2ǫF + ǫP + ǫ′ + ǫH (12)

= min
w∈Sk

[
w · µ(ψ) − w · µ̂E

]
+ ∆T + 2ǫF + ǫP + ǫ′ + ǫH (13)

≤ min
w∈Sk

[
w · µ(ψ) − w · µE

]
+ ∆T + 2ǫF + ǫP + 2ǫ′ + 2ǫH (14)

≤ w
∗ · µ(ψ) − w

∗ · µE + ∆T + 2ǫF + ǫP + 2ǫ′ + 2ǫH (15)

≤ V (ψ) − V (πE) + ∆T + 2ǫF + ǫP + 2ǫ′ + 2ǫH + (2ǫR)/(1 − γ) (16)

In (6), we used von Neumann’s minmax theorem. In (7), Lemma 1.In (8), the definition ofw. In (9),
the fact that̂πt is ǫP -optimal w.r.t.R(s) = w

t·φ(s). In (10), the fact that̂µ(t) is anǫF -good estimate
of µ(π̂(t)). In (11), Corollary 1. In (12), again the fact thatµ̂(t) is anǫF -good estimate ofµ(π̂(t)).
In (13), the definition ofψ. In (14), Lemma 1. In (15), we letw∗ = arg minw∈Sk maxs |R∗(s) −
(w · φφφ(s))|. In (16), Lemma 2.

Plugging in the choice forT into ∆T and rearranging implies the theorem.

3 When transition function is unknown

We will employ several technical lemmas developed in Kearnsand Singh [4] and Abbeel and Ng
[5]. This is not a complete proof, but just a sketch of the maincomponents of one.

For an MDP/RM = (S,A, γ, θ,φφφ), suppose that we knowθ(s, a, ·) exactly on a subsetZ ⊆ S ×A.
Then we can construct a estimateMZ of M according to the following definition, which is similar
to Definition 9 in Kearns and Singh [4].

Definition 1. LetM = (S,A, γ, θ,φφφ) be a MDP/R, and letZ ⊆ S × A. Then theinduced MDP/R
MZ = (S ∪ {s0},A, γ, θZ ,φφφZ) is defined as follows, whereSZ = {s : (s, a) ∈ Z for somea ∈
A}:

• θZ(s0, a, s0) = 1 for all a ∈ A, i.e. s0 is an absorbing state.

• If (s, a) ∈ Z ands′ ∈ SZ , thenθZ(s, a, s′) = θ(s, a, s′).
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• If (s, a) ∈ Z, thenθZ(s, a, s0) = 1 −
∑

s′∈SZ
θ(s, a, s′).

• If (s, a) /∈ Z, thenθZ(s, a, s0) = 1.

• φφφZ(s) = φφφ(s) for all s ∈ S, andφφφZ(s0) = −1, where−1 is thek-length vector of all
−1’s.

The following lemma, due to Kearns and Singh [4] (Lemma 7), shows thatMZ is essentially a
pessimistic estimate forM .
Lemma 3. LetM = (S,A, γ, θ,φφφ) be a MDP/R whereφφφ(s) ∈ [−1, 1]k, and letZ ⊆ S × A. Then
for all w ∈ S

k andψ ∈ Ψ, we havew · µ(ψ,M) ≥ w · µ(ψ,MZ).

Proof. As above, letSZ = {s : (s, a) ∈ Z for somea ∈ A}. Also let AZ = {a : (s, a) ∈
Z for somes ∈ S}. All transitions inMZ between states inSZ using an action inAZ are the same
as inM , while all other transitions are routed to the absorbing states0. Observing thatφφφ(s0) = −1

andφφφ(s) � −1 for all s proves the lemma.

Definition 2. LetM = (S,A, γ, θ,φφφ) be an MDP/R. LetH be the length of each sample trajectory
from the expert’s policy. Then we say a subsetZ ⊆ S × A is (η, H)-visitedbyπE in M if

Z =

{
(s, a)

∣∣∣ Pr(∃t ∈ [1, . . . ,H] such that(st, at) = (s, a) | πE ,M) ≥
η

|S||A|

}
. (17)

The following lemma, due to Abbeel and Ng [5], says that ifZ ⊆ S × A is (η,H)-visited byπE in
M , thenπE has a similar value inMZ as it does inM .
Lemma 4. LetM = (S,A, γ, θ,φφφ) be a MDP/R, letH ≥ (1/(1 − γ)) ln(1/(ǫH(1 − γ))), and let
Z ⊆ S × A be(η,H)-visited byπE in M . Then for allw ∈ S

k

|w · µ(πE ,M) − w · µ(πE ,MZ)| ≤
η

1 − γ
+ ǫH . (18)

Proof. By the definition ofMZ and the union bound, we havePr({(st, at)}
H
t=1 ⊆ Z | πE ,MZ) =

Pr({(st, at)}
H
t=1 ⊆ Z | πE ,M) ≥ 1 − η. Now supposew · µ(πE ,M) ≥ w · µ(πE ,MZ). Then

|w · µ(πE ,M) − w · µ(πE ,MZ)| (19)

= E

[
H∑

t=0

γt
w · φφφ(st)

∣∣∣ πE ,M

]
+ E

[
∞∑

t=H+1

γt
w · φφφ(st)

∣∣∣ πE ,M

]
(20)

−E

[
H∑

t=0

γt
w · φφφ(st)

∣∣∣ πE ,MZ

]
− E

[
∞∑

t=H+1

γt
w · φφφ(st)

∣∣∣ πE ,MZ

]
(21)

≤ η
1 − γH

1 − γ
+

γH+1

1 − γ
(22)

≤
η

1 − γ
+ ǫH (23)

A parallel argument can be made in casew · µ(πE ,M) ≤ w · µ(πE ,MZ).

Since we will not knowMZ exactly, we will need to estimate it. The following lemma, due to
Abbeel and Ng [5] (Lemma 14), says that if two MDP/R’sM andM̂ do not differ much, then the
value of the same policy inM andM̂ is not very different.

Lemma 5. Let M = (S,A, γ, θ,φφφ) andM̂ = (S,A, γ, θ̂,φφφ) be two MDP/R’s that differ only in
their transition functions. Supposeθ and θ̂ satisfy

∀s ∈ S, a ∈ A ‖θ(s, a, ·), θ̂(s, a, ·)‖1 ≤ ǫ. (24)

Then for allψ ∈ Ψ andw ∈ S
k, we have

∣∣∣w · µ(ψ,M) − w · µ(ψ, M̂)
∣∣∣ ≤

2ǫ

(1 − γ)2
. (25)
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The following lemma, due to Abbeel and Ng [5] (Lemma 17), bounds the number of trajectories
needed fromπE to makeθ andθ̂ similar on a subsetZ ⊆ S × A that is(η,H)-visited byπE .

Lemma 6. Let M = (S,A, γ, θ,φφφ). Let Z ⊆ S × A be (ǫ,H)-visited byπE in M . Let θ̂ be the
MLE for θ formed by observingm independent trajectories fromπE . Also, letK(s, a) denote the
actual number of times(s, a) is visited in them trajectories. Then for

∀(s, a) ∈ Z, K(s, a) ≥
|S|2

4ǫ2
ln

|S|3|A|

ǫ
(26)

∀(s, a) ∈ Z, ‖θ(s, a, ·), θ̂(s, a, ·)‖1 ≤ ǫ (27)

to hold with probability1 − δ, it suffices that

m ≥
|S|3|A|

8ǫ3
ln

|S|3|A|

δǫ
+ |S||A| ln

2|S||A|

δ
. (28)

3.1 Putting it all together

Here is the algorithm:

1. Collectm ≥ |S|3|A|
8ǫ3

ln |S|3|A|
δǫ

+ |S||A| ln 2|S||A|
δ

sample trajectories from the expert.

2. Define the following:

(a) LetZ be the set of all state-action pairs(s, a) such thatK(s, a) ≥ |S|2

4ǫ2
ln |S|3|A|

ǫ
.

(b) Let θ̂ be the MLE forθ.

(c) LetM = (S,A, γ, θ,φφφ) andM̂ = (S,A, γ, θ̂,φφφ).

3. SubmitM̂Z andµ̂E to the MWAL algorithm, which returnsψ.

Lemma 3 shows thatV (ψ,M) is more thanV (ψ,MZ). Lemma 5 says thatV (ψ,MZ) is close
V (ψ, M̂Z). SinceM̂Z is the MDP\R that we gave to the MWAL algorithm, Theorem 2 says that
V (ψ, M̂Z) is more thanV (πE , M̂Z). Lemma 5 says thatV (πE , M̂Z) is close toV (πE ,MZ).
Lemma 4 says thatV (πE ,MZ) is close toV (πE ,M).
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