
Table 2: Empirical results for MDeepBoostSum, Φ = exp. AB stands for AdaBoost.

abalone AB.MR AB.MR-L1 MDeepBoost handwritten AB.MR AB.MR-L1 MDeepBoost
Error 0.713 0.696 0.677 Error 0.016 0.011 0.009

(std dev) (0.0130) (0.0132) (0.0092) (std dev) (0.0047) (0.0026) (0.0012)
Avg tree size 69.8 31.5 23.8 Avg tree size 187.3 240.6 203.0

Avg no. of trees 17.9 13.3 15.3 Avg no. of trees 34.2 21.7 24.2

letters AB.MR AB.MR-L1 MDeepBoost pageblocks AB.MR AB.MR-L1 MDeepBoost
Error 0.042 0.036 0.032 Error 0.020 0.017 0.013

(std dev) (0.0023) (0.0018) (0.0016) (std dev) (0.0037) (0.0021) (0.0027)
Avg tree size 1942.6 1903.8 1914.6 Avg tree size 134.8 118.3 124.9

Avg no. of trees 24.2 24.4 23.3 Avg no. of trees 8.5 14.3 6.6

pendigits AB.MR AB.MR-L1 MDeepBoost satimage AB.MR AB.MR-L1 MDeepBoost
Error 0.008 0.006 0.004 Error 0.089 0.081 0.073

(std dev) (0.0015) (0.0023) (0.0011) (std dev) (0.0062) (0.0040) (0.0045)
Avg tree size 272.5 283.3 259.2 Avg tree size 557.9 478.8 535.6

Avg no. of trees 23.2 19.8 21.4 Avg no. of trees 7.6 7.3 7.6

statlog AB.MR AB.MR-L1 MDeepBoost yeast AB.MR AB.MR-L1 MDeepBoost
Error 0.011 0.006 0.004 Error 0.388 0.376 0.352

(std dev) (0.0059) (0.0035) (0.0030) (std dev) (0.0392) (0.0431) (0.0402)
Avg tree size 74.8 79.2 61.8 Avg tree size 100.6 111.7 71.4

Avg no. of trees 23.2 17.5 17.6 Avg no. of trees 8.7 6.5 7.7

A Additional Experiments

In this section, we present some further experimental results for MDeepBoostSum and MDeep-
BoostCompSum algorithms. Recall that the results of Table 1 were obtained using the following
parameter optimization procedure. We randomly partitioned each dataset into 4 folds and, for each
tuple (λ, β, K) in the set of possible parameters (described below), we ran MDeepBoostSum, with a
different assignment of folds to the training set, validation set and test set for each run. Specifically,
for each run i ∈ {0, 1, 2, 3}, fold i was used for testing, fold i + 1 (mod 4) was used for validation,
and the remaining folds were used for training. For each run, we selected the parameters that had
the lowest error on the validation set and then measured the error of those parameters on the test
set. The average error and the standard deviation of the error over all 4 runs is reported in Table 1.
We noted that there is an alternative procedure to compare algorithms that is adopted in a number
of previous studies of boosting [Li, 2009a,b, Sun et al., 2012] which is to simply record the average
test error of the best parameter tuples over all runs. We argued that as the size of the validation set
grows, the errors obtained via this procedure should converge to the true generalization error of the
algorithm. The results for this alternative procedure are shown in Table 2 and Table 3.

Observe that once again the results of our experiments show that for each dataset deep boosting
algorithms outperform their shallow rivals. Moreover, all of our results are statistically significant,
at 5% level using one-sided, paired t-test. This provides further empirical evidence in favor of
DeepBoost algorithms.

B Proof of Theorem 1

Our proof makes use of existing methods for deriving Rademacher complexity bounds [Koltchinskii
and Panchenko, 2002] and a proof technique used in [Schapire et al., 1997].

Theorem 1. Assume p > 1 and let H1, . . . ,Hp be p families of functions mapping from X × Y to
[0, 1]. Fix ρ > 0. Then, for any δ > 0, with probability at least 1− δ over the choice of a sample S

of size m drawn i.i.d. according to D, the following inequality holds for all f =
∑T

t=1 αtht ∈ F:

R(f) ≤ R̂S,ρ(f)+
8c

ρ

T∑
t=1

αtRm(Π1(Hkt))+
2
cρ

√
log p

m
+

√⌈
4
ρ2 log

(
c2ρ2m
4 log p

)⌉ log p

m
+

log 2
δ

2m
,

Thus, R(f) ≤ R̂S,ρ(f) + 8c
ρ

∑T
t=1 αtRm(Hkt) + O

(√
log p

ρ2m
log

[
ρ2c2m
4 log p

])
.
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Table 3: Empirical results for MDeepBoostCompSum, Φ1(u) = log2(1+u) and Φ2 = exp(u +1).

abalone LogReg LogReg-L1 MDeepBoost handwritten LogReg LogReg-L1 MDeepBoost
Error 0.710 0.700 0.687 Error 0.016 0.012 0.008

(std dev) (0.0170) (0.0102) (0.0104) (std dev) (0.0031) (0.0020) (0.0024)
Avg tree size 162.1 156.5 28.0 Avg tree size 237.7 186.5 153.8

Avg no. of trees 22.2 9.8 10.2 Avg no. of trees 32.3 32.8 35.9

letters LogReg LogReg-L1 MDeepBoost pageblocks LogReg LogReg-L1 MDeepBoost
Error 0.043 0.038 0.035 Error 0.019 0.016 0.012

(std dev) (0.0018) (0.0012) (0.0012) (std dev) (0.0035) (0.0025) (0.0022)
Avg tree size 1986.5 1759.5 1807.3 Avg tree size 127.4 151.7 147.9

Avg no. of trees 25.5 29.0 27.2 Avg no. of trees 4.5 6.8 7.4

pendigits LogReg LogReg-L1 MDeepBoost satimage LogReg LogReg-L1 MDeepBoost
Error 0.009 0.007 0.005 Error 0.091 0.082 0.074

(std dev) (0.0021) (0.0014) (0.0012) (std dev) (0.0066) (0.0057) (0.0056)
Avg tree size 306.3 277.1 262.7 Avg tree size 412.6 454.6 439.6

Avg no. of trees 21.9 20.8 19.7 Avg no. of trees 6.0 5.8 5.8

statlog LogReg LogReg-L1 MDeepBoost yeast LogReg LogReg-L1 MDeepBoost
Error 0.012 0.006 0.002 Error 0.381 0.375 0.354

(std dev) (0.0054) (0.0020) (0.0022) (std dev) (0.0467) (0.0458) (0.0468)
Avg tree size 74.3 71.6 65.4 Avg tree size 103.9 83.3 117.2

Avg no. of trees 22.3 20.6 17.5 Avg no. of trees 14.1 9.3 9.3

Proof. For a fixed h = (h1, . . . , hT ), any α in the probability simplex ∆ defines a distribution over
{h1, . . . , hT }. Sampling from {h1, . . . , hT } according to α and averaging leads to functions g of
the form g = 1

n

∑T
i=1 ntht for some n = (n1, . . . , nT ), with

∑T
t=1 nt = n, and ht ∈ Hkt .

For any N = (N1, . . . , Np) with |N| = n, we consider the family of functions

GF,N =
{

1
n

p∑
k=1

Nk∑
j=1

hk,j | ∀(k, j) ∈ [p]× [Nk], hk,j ∈ Hk

}
,

and the union of all such families GF,n =
⋃
|N|=n GF,N. Fix ρ > 0. For a fixed

N, the Rademacher complexity of Π1(GF,N) can be bounded as follows for any m ≥ 1:
Rm(Π1(GF,N)) ≤ 1

n

∑p
k=1 Nk Rm(Π1(Hk)). Thus, by Theorem 3, the following multi-class

margin-based Rademacher complexity bound holds. For any δ > 0, with probability at least 1 − δ,
for all g ∈ GF,N,

Rρ(g)− R̂S,ρ(g) ≤ 1
n

4c

ρ

p∑
k=1

Nk Rm(Π1(Hk)) +

√
log 1

δ

2m
.

Since there are at most pn possible p-tuples N with |N| = n,3 by the union bound, for any δ > 0,
with probability at least 1− δ, for all g ∈ GF,n, we can write

Rρ(g)− R̂S,ρ(g) ≤ 1
n

4c

ρ

p∑
k=1

Nk Rm(Π1(Hk)) +

√
log pn

δ

2m
.

Thus, with probability at least 1−δ, for all functions g = 1
n

∑T
i=1 ntht with ht ∈ Hkt , the following

inequality holds

Rρ(g)− R̂S,ρ(g) ≤ 1
n

4c

ρ

p∑
k=1

∑
t:kt=k

nt Rm(Π1(Hkt)) +

√
log pn

δ

2m
.

Taking the expectation with respect to α and using Eα[nt/n] = αt, we obtain that for any δ > 0,
with probability at least 1− δ, for all g, we can write

E
α
[Rρ(g)− R̂S,ρ(g)] ≤ 4c

ρ

T∑
t=1

αtRm(Π1(Hkt)) +

√
log pn

δ

2m
.

3 The number S(p, n) of p-tuples N with |N| = n is known to be precisely
`

p+n−1
p−1

´
.
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Fix n ≥ 1. Then, for any δn > 0, with probability at least 1− δn,

E
α
[Rρ/2(g)− R̂S,ρ/2(g)] ≤ 8c

ρ

T∑
t=1

αtRm(Π1(Hkt)) +

√
log pn

δn

2m
.

Choose δn = δ
2pn−1 for some δ > 0, then for p ≥ 2,

∑
n≥1 δn = δ

2(1−1/p) ≤ δ. Thus, for any δ > 0
and any n ≥ 1, with probability at least 1− δ, the following holds for all g:

E
α
[Rρ/2(g)− R̂S,ρ/2(g)] ≤ 8c

ρ

T∑
t=1

αtRm(Π1(Hkt)) +

√
log 2p2n−1

δ

2m
. (14)

Now, for any f =
∑T

t=1 αtht ∈ F and any g = 1
n

∑T
i=1 ntht, we can upper-bound R(f) =

Pr(x,y)∼D[ρf (x, y) ≤ 0], the generalization error of f , as follows:

R(f) = Pr
(x,y)∼D

[ρf (x, y)− ρg(x, y) + ρg(x, y) ≤ 0]

≤ Pr[ρf (x, y)− ρg(x, y) < −ρ/2] + Pr[ρg(x, y) ≤ ρ/2]
= Pr[ρf (x, y)− ρg(x, y) < −ρ/2] + Rρ/2(g).

We can also write

R̂ρ/2(g) = R̂S,ρ/2(g − f + f) ≤ Pr
(x,y)∼S

[ρg(x, y)− ρf (x, y) < −ρ/2] + R̂S,ρ(f).

Combining these inequalities yields

Pr
(x,y)∼D

[ρf (x, y) ≤ 0]− R̂S,ρ(f) ≤ Pr
(x,y)∼D

[ρf (x, y)− ρg(x, y) < −ρ/2]

+ Pr
(x,y)∼S

[ρg(x, y)− ρf (x, y) < −ρ/2] + Rρ/2(g)− R̂S,ρ/2(g).

Taking the expectation with respect to α yields

R(f)− R̂S,ρ(f) ≤ E
(x,y)∼D,α

[1ρf (x,y)−ρg(x,y)<−ρ/2]

+ E
(x,y)∼S,α

[1ρg(x,y)−ρf (x,y)<−ρ/2] + E
α
[Rρ/2(g)− R̂S,ρ/2(g)]. (15)

Fix (x, y) and for any function ϕ : X ×Y → [0, 1] define y′ϕ as follows: y′ϕ = argmaxy′ 6=y ϕ(x, y).
For any g, by definition of ρg , we can write ρg(x, y) ≤ g(x, y)− g(x, y′f ). In light of this inequality
and Hoeffding’s bound, the following holds:

E
α
[1ρf (x,y)−ρg(x,y)<−ρ/2] = Pr

α
[ρf (x, y)− ρg(x, y) < −ρ/2]

≤ Pr
α

[(
f(x, y)− f(x, y′f )

)
−

(
g(x, y)− g(x, y′f )

)
< −ρ/2

]
≤ e−nρ2/8.

Similarly, for any g, we can write ρf (x, y) ≤ f(x, y) − f(x, y′g). Using this inequality, the union
bound and Hoeffding’s bound, the other expectation term appearing on the right-hand side of (15)
can be bounded as follows:

E
α
[1ρg(x,y)−ρf (x,y)<−ρ/2] = Pr

α
[ρg(x, y)− ρf (x, y) < −ρ/2]

≤ Pr
α

[(
g(x, y)− g(x, y′g)

)
−

(
f(x, y)− f(x, y′g)

)
< −ρ/2

]
≤

∑
y′ 6=y

Pr
α

[(
g(x, y)− g(x, y′)

)
−

(
f(x, y)− f(x, y′)

)
< −ρ/2

]
≤ (c− 1)e−nρ2/8.

Thus, for any fixed f ∈ F , we can write

R(f)− R̂S,ρ(f) ≤ ce−nρ2/8 + E
α
[Rρ/2(g)− R̂S,ρ/2(g)].
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Therefore, the following inequality holds:

sup
f∈F

R(f)− R̂S,ρ(f) ≤ ce−nρ2/8 + sup
g

E
α
[Rρ/2(g)− R̂S,ρ/2(g)],

and, in view of (14), for any δ > 0 and any n ≥ 1, with probability at least 1 − δ, the following
holds for all f ∈ F :

R(f)− R̂S,ρ(f) ≤ 8c

ρ

T∑
t=1

αtRm(Π1(Hkt
)) + ce−

nρ2

8 +

√
(2n− 1) log p + log 2

δ

2m
.

Choosing n =
⌈

4
ρ2 log

(
c2ρ2m
4 log p

)⌉
yields the following inequality:4

R(f)− R̂S,ρ(f) ≤ 8c

ρ

T∑
t=1

αtRm(Π1(Hkt)) +
2
cρ

√
log p

m
+

√⌈
4
ρ2 log

(
c2ρ2m
4 log p

)⌉ log p

m
+

log 2
δ

2m
,

and concludes the proof.

Our proof of Theorem 1 made use of the following general multi-class learning bound, which admits
a more favorable dependency on the number of classes c than the existing multi-class Rademacher
complexity bounds of [Koltchinskii and Panchenko, 2002, Mohri et al., 2012].
Theorem 3. Let G be a family of hypotheses mapping X ×Y to R, with Y = {1, . . . , c}. Fix ρ > 0.
Then, for any δ > 0, with probability at least 1− δ > 0, the following bound holds for all g ∈ G:

R(g) ≤ R̂S,ρ(g) +
4c

ρ
Rm(Π1(G)) +

√
log 1

δ

2m
,

where Π1(G) = {(x, y) 7→ g(x, y) : y ∈ Y, g ∈ G}.

Proof. We will need the following definition for this proof:

ρg(x, y) = min
y′ 6=y

(g(x, y)− g(x, y′))

ρθ,g(x, y) = min
y′

(g(x, y)− g(x, y′) + θ1y′=y),

where θ > 0 is an arbitrary constant. Observe that E[1ρg(x,y)≤0] ≤ E[1ρθ,g(x,y)≤0] since the in-
equality ρθ,g(x, y) ≤ ρg(x, y) holds for all (x, y) ∈ X × Y:

ρθ,g(x, y) = min
y′

(
g(x, y)− g(x, y′) + θ1y′=y

)
≤ min

y′ 6=y

(
g(x, y)− g(x, y′) + θ1y′=y

)
= min

y′ 6=y

(
g(x, y)− g(x, y′)

)
= ρg(x, y),

where the inequality follows from taking the minimum over a smaller set.

Let Φρ be the margin loss function defined for all u ∈ R by Φρ(u) = 1u≤0+(1− u
ρ )10<u≤ρ. We also

let G̃ = {(x, y) 7→ ρθ,g(x, y) : g ∈ G} and G̃ = {Φρ ◦ g̃ : g̃ ∈ G̃}. By the standard Rademacher
complexity bound [Koltchinskii and Panchenko, 2002, Mohri et al., 2012], for any δ > 0, with
probability at least 1− δ, the following holds for all g ∈ G:

R(g) ≤ 1
m

m∑
i=1

Φρ(ρθ,g(xi, yi)) + 2Rm(G̃) +

√
log 1

δ

2m
.

4To select n we consider f(n) = ce−nu +
√

nv, where u = ρ2/8 and v = log p/m. Taking the derivative
of f , setting it to zero and solving for n, we obtain n = − 1

2u
W−1(− v

2c2u
) where W−1 is the second branch

of the Lambert function (inverse of x 7→ xex). Using the bound − log x ≤ −W−1(−x) ≤ 2 log x leads to the
following choice of n: n =

˚
− 1

2u
log( v

2c2u
)
ˇ
.

13



Fixing θ = 2ρ, we observe that Φρ(ρθ,g(xi, yi)) = Φρ(ρg(xi, yi)) ≤ 1ρg(xi,yi)≤ρ. Indeed, either
ρθ,g(xi, yi) = ρg(xi, yi) or ρθ,g(xi, yi) = 2ρ ≤ ρg(xi, yi), which implies the desired result. Tala-
grand’s lemma [Ledoux and Talagrand, 1991, Mohri et al., 2012] yields Rm(G̃) ≤ 1

ρRm(G̃) since
Φρ is a 1

ρ -Lipschitz function. Therefore, for any δ > 0, with probability at least 1− δ, for all g ∈ G:

R(g) ≤ RS,ρ(g) +
2
ρ
Rm(G̃) +

√
log 1

δ

2m
.

and to complete the proof it suffices to show that Rm(G̃) ≤ 2cRm(Π1(G)).

Here Rm(G̃) can be upper-bounded as follows:

Rm(G̃) =
1
m

E
S,σ

[
sup
g∈G

m∑
i=1

σi(g(xi, yi)−max
y

(g(xi, y)− 2ρ1y=yi
))

]

≤ 1
m

E
S,σ

[
sup
g∈G

m∑
i=1

σig(xi, yi)
]

+
1
m

E
S,σ

[
sup
g∈G

m∑
i=1

σi max
y

(g(xi, y)− 2ρ1y=yi
)
]
.

Now we bound the second term above. Observe that

1
m

E
σ

[
sup
g∈G

m∑
i=1

σig(xi, yi)
]

=
1
m

E
σ

[
sup
g∈G

m∑
i=1

∑
y∈Y

σig(xi, y)1yi=y

]

≤ 1
m

∑
y∈Y

E
σ

[
sup
g∈G

m∑
i=1

σig(xi, y)1yi=y

]

=
∑
y∈Y

1
m

E
σ

[
sup
g∈G

m∑
i=1

σig(xi, y)
(

εi

2
+

1
2

)]
,

where εi = 2 · 1yi=y − 1. Since εi ∈ {−1,+1}, σi and σiεi admit the same distribution and, for any
y ∈ Y , each of the terms of the right-hand side can be bounded as follows:

1
m

E
σ

[
sup
g∈G

m∑
i=1

σig(xi, y)
(εi

2
+

1
2

)]

≤ 1
2m

E
σ

[
sup
g∈G

m∑
i=1

σiεig(xi, y)
]

+
1

2m
E
σ

[
sup
g∈G

m∑
i=1

σig(xi, y)
]

≤ R̂m(Π1(G)).

Thus, we can write 1
m ES,σ

[
supg∈G

∑m
i=1 σig(xi, yi)

]
≤ cRm(Π1(G)). To bound the second

term, we first apply Lemma 8.1 of Mohri et al. [2012] that immediately yields that

1
m

E
S,σ

[
sup
g∈G

m∑
i=1

σi max
y

(g(xi, y)− 2ρ1y=yi
)
]
≤

∑
y∈Y

1
m

E
S,σ

[
sup
g∈G

m∑
i=1

σi(g(xi, y)− 2ρ1y=yi
)
]

and since Rademacher variables are mean zero, we observe that

E
S,σ

[
sup
g∈G

m∑
i=1

σi(g(xi, y)− 2ρ1y=yi)
]

= E
S,σ

[
sup
g∈G

( m∑
i=1

σig(xi, y)
)
− 2ρ

m∑
i=1

σi1y=yi

]

= E
S,σ

[
sup
g∈G

m∑
i=1

σig(xi, y)
]
≤ Rm(Π1(G))

which completes the proof.
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C Consistency

In this section, we discuss several questions related to consistency. In the multi-class setting where c
scoring functions are used, a loss function L is defined over Y×Yc which associates to a class y ∈ Y
and class scores s1, . . . , sc the real number L(y, s1, . . . , sc). Consistency has often served as a guide
for the selection of a loss function. Informally, a loss function is consistent if minimizing it results
in a classifier whose accuracy is close to that of the Bayes classifier. Tewari and Bartlett [2007]
(see also [Zhang, 2004a,b]) showed that, in general, loss functions of the form (s1, . . . , sc, y) 7→
Φ(−(sy − maxy′ 6=y sy′)) are not consistent, while those that can be written as (s1, . . . , sc, y) 7→∑

y′ 6=y Φ(−(sy − sy′)) are consistent under some additional regularity assumptions on Φ. This
may suggest that solving the optimization problem associated to Fsum may result in a more accurate
classifier than the solution of minα≥0 Fmax(α).5

However, the notion of loss consistency does not take into account the hypothesis set H used since
it assumes an optimization carried out over the set of all measurable functions. Long and Servedio
[2013] proposed instead a notion of H-consistency precisely meant to take the hypothesis set used
into consideration. They showed empirically that using loss functions that are H-consistent can lead
to significantly better performances than using a loss function known to be consistent. Informally,
a loss function is said to be H-consistent if minimizing it over H results in a classifier achieving a
generalization error close to that of the best classifier in H .

More formally, L is said to be realizable H-consistent [Long and Servedio, 2013] if for any dis-
tribution D over X × Y realizable with respect to H and any ε > 0, there exists δ > 0 such that
if |E(x,y)∼D[L(y, h(x, 1), . . . , h(x, c))] − infh∈H E(x,y)∼D[L(y, h(x, 1), . . . , h(x, c))]| ≤ δ, then
E(x,y)∼D[1ρh(x,y)≤0] ≤ ε. The following is an extension of a result of Long and Servedio [2013] to
our setting.
Theorem 4. Let u 7→ Φ(−u) be a non-increasing function upper-bounding u 7→ 1u≤0, bounded
over R+, and such that limu→∞Φ(−u) = 0, and let H be a family of functions mapping
X × Y to R closed under multiplication by a positive scalar (H is a cone). Then, the loss func-
tions (s1, . . . , sc, y) 7→ Φ(−(sy − maxy′ 6=y sy′)) and (s1, . . . , sc, y) 7→

∑
y′ 6=y Φ(−(sy − sy′))

are realizable H-consistent. Moreover, if Φ = Φ1 ◦ Φ2 with non-decreasing Φ1 and Φ2

verifying limu→0 Φ1(u) = limu→∞Φ2(−u) = 0 then the loss function (s1, . . . , sc, y) 7→
Φ1

( ∑
y′ 6=y Φ2(−(sy − sy′))

)
is also realizable H-consistent.

Proof. Let D be a distribution for which h∗ ∈ H achieves zero error, thus ρh∗(x, y) > 0
for all (x, y) in the support of D. Fix ε > 0 and assume that |E(x,y)∼D[Φ(−ρh(x, y))] −
infh∈H E(x,y)∼D[Φ(−ρh(x, y))]| ≤ ε for some h ∈ H . Then, since 1u≤0 ≤ Φ(−u) and since
ηh∗ is in H for any η > 0, the following holds for any η > 0:

E
(x,y)∼D

[1ρh(x,y)≤0] ≤ E
(x,y)∼D

[Φ(−ρh(x, y))]

≤ E
(x,y)∼D

[Φ(−ρηh∗(x, y))] + ε = E
(x,y)∼D

[Φ(−ηρh∗(x, y))] + ε.

Since Φ(−u) is bounded for u ≥ 0, by the Lebesgue dominated convergence theorem,
limη→∞ E(x,y)∼D[Φ(−ρηh∗(x, y))] = 0, which proves the first statement of the theorem. Now
suppose that∣∣∣ E

(x,y)∼D

[ ∑
y′ 6=y

Φ((−(h(x, y)− h(x, y′)))
]
− inf

h∈H
E

(x,y)∼D

[ ∑
y′ 6=y

Φ((−(h(x, y)− h(x, y′)))
]∣∣∣ ≤ ε

for some h ∈ H . Using 1u≤0 ≤ Φ(−u), upper-bounding the maximum by a sum, and using the fact
that ηh∗ is in H for any η > 0, the following holds for any η > 0:

E[1ρh(x,y)≤0] ≤ E
[ ∑

y′ 6=y

Φ(−(h(x, y)− h(x, y′)))
]
≤ E

[ ∑
y′ 6=y

Φ(−η(h∗(x, y)− h∗(x, y′)))
]

+ ε.

5A consistency condition often adopted is to select a function f such that
P

y∈Y f(x, y) = 0 for any
x ∈ X [Zhang, 2004a, Tewari and Bartlett, 2007, Zou et al., 2008]. As observed by other authors in the past
(e.g., Li [2009a]), this constraint is automatically verified for f =

P
t αtht and therefore not needed during

optimization when it holds for the base classifiers ht used, which can be ensured straightforwardly in our
context by adding −1 to each ht.
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Since by assumption ρh∗(x, y) > 0, the inequality (h∗(x, y) − h∗(x, y′)) > 0 holds for all y′ 6= y
by assumption. Therefore, applying the Lebesgue dominated convergence theorem as before yields
the second statement of the theorem. The last statement can be proven in a similar way.

The conditions of the theorem hold in particular for the exponential and the logistic functions and
H = conv(

⋃p
k=1 Hk). Thus, the theorem shows that the loss functions associated to Fmax and Fsum

are realizable H-consistent in the common cases where the exponential or logistic losses are used.
Similarly, it shows that in the common case where Φ1(u) = log(1 + u) and Φ2(u) = exp(u + 1),
the loss function associated to Fcompsum is H-consistent.

D Relationships between objective functions

One caveat of Fmax is that it is not differentiable. In some cases, it may be desirable to deal with a
somewhat simpler optimization problem with a differentiable objective function. As it was already
observed in Section 3.2 each of Fsum and Fmaxsum serve as a differentiable upper bound on Fmax

provided that Φ itself is differentiable. We will show that under certain mild assumptions these
objective functions are essentially within a constant factor of each other. In view of the inequality∑

y 6=yi
Φ

(
1−

∑N
j=1 αjhj(xi, yi, y)

)
≤ (c−1) maxy 6=yi Φ

(
1−

∑N
j=1 αjhj(xi, yi, y)

)
, the following

inequalities relate Fsum, Fmax, and Fmaxsum:

1
c− 1

Fsum ≤ Fmax ≤ Fmaxsum. (16)

Conversely, observe that due to the presence of the term
∑N

j=1 Λjαj in all these objective functions,
the domain of α can be restricted to B+ = {α : (0 ≤ α) ∧ (‖α‖1 ≤ Λ)} with the constant Λ > 0
depending only on Λjs. Then, the following inequality holds over B+:

Fmaxsum ≤
eΛ

c− 1
Fsum. (17)

Indeed, if Φ = exp or Φ(−x) = log2(1 + e−x), then Φ(x + b) ≤ ebΦ(x) for any b ≥ 0 and we can
write

Φ
(
1−

N∑
j=1

αjρhj (xi, yi)
)

= Φ
(
1−

N∑
j=1

αj
1

c− 1

∑
y 6=yi

hj(xi, yi, y) +
N∑

j=1

αj
1

c− 1

∑
y 6=yi

(hj(xi, yi, y)− ρhj (xi, yi)
)

≤ 1
c− 1

∑
y 6=yi

Φ
(
1−

N∑
j=1

αjhj(xi, yi, y) + 2‖α‖1
)

≤ 1
c− 1

∑
y 6=yi

Φ
(
1−

N∑
j=1

αjhj(xi, yi, y)
)
e2‖α‖1 ,

where we used the convexity of Φ for the first inequality.

E MDeepBoostSum

E.1 Direction

For any j ∈ [1, N ], Fsum(αt−1 + ηej) is given by

Fsum(αt−1+ηej) =
1
m

m∑
i=1

∑
y 6=yi

Φ
(
1−ft−1(xi, yi, y)−ηhj(xi, yi, y)

)
+

N∑
j=1

Λjαt−1,j+ηΛj . (18)
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Thus, for any j ∈ [1, N ], the directional derivative of Fsum at αt−1 along ej can be expressed as
follows in terms of εt,j :

F ′
sum(αt−1, ej) =

1
m

m∑
i=1

∑
y 6=yi

(−hj(xi, yi, y))Φ′
(
1− ft−1(xi, yi, y)

)
+ Λj

=
1
m

m∑
i=1

∑
y 6=yi

(−hj(xi, yi, y))Dt(i, y)St + Λj =
St

m
(2εt,j − 1) + Λj .

Thus, the direction k selected at round t is given by k = argminj∈[1,N ] εt,j + Λjm
2St

.

E.2 Step

Given the direction ek, the optimal step value η is given by argminη Fsum(αt−1 +η ek). In the most
general case, η can be found via a line search or other numerical methods. In some special cases, we
can derive a closed-form solution for the step by minimizing an upper bound on Fsum(αt−1 + η ek).

Since for any i ∈ [1,m] and y ∈ Y , hk(xi, yi, y) = 1+hk(xi,yi,y)
2 · (1) + 1−hk(xi,yi,y)

2 · (−1), by the
convexity of u 7→ Φ(1− ηu), the following holds for all η ∈ R:

Φ
(
1− ft−1(xi, yi, y)− ηhk(xi, yi, y)

)
≤ 1 + hk(xi, yi, y)

2
Φ

(
1− ft−1(xi, yi, y)− η

)
+

1− hk(xi, yi, y)
2

Φ
(
1− ft−1(xi, yi, y) + η

)
.

Thus, we can write

F (αt−1 + ηek) ≤ 1
m

m∑
i=1

∑
y 6=yi

1 + hk(xi, yi, y)
2

Φ
(
1− ft−1(xi, yi, y))− η

)

+
1
m

m∑
i=1

∑
y 6=yi

1− hk(xi, yi, y)
2

Φ
(
1− ft−1(xi, yi, y)) + η

)
+

N∑
j=1

αt−1,jΛj + ηΛk.

Let J(η) denote that upper bound. We can select η as the solution of minη+αt−1,k≥0 J(η). Since J
is convex, this defines a convex optimization problem.

E.2.1 Exponential loss

In the case Φ = exp, J(η) can be expressed as follows:

J(η) =
1
m

m∑
i=1

∑
y 6=yi

1 + hk(xi, yi, y)
2

e1−ft−1(xi,yi,y)e−η

+
1
m

m∑
i=1

∑
y 6=yi

1− hk(xi, yi, y)
2

e1−ft−1(xi,yi,y)eη +
N∑

j=1

αt−1,jΛj + ηΛk,

with e1−ft−1(xi,yi,y) = Φ′(1− ft−1(xi, yi, y)) = StDt(i, y). Thus, J(η) can be rewritten as

J(η) =
1
m

m∑
i=1

∑
y 6=yi

Dt(i, y)Ste
−ηhk(xi,yi,y) + Λkη

= (1− εt,k)
St

m
e−η + εt,k

St

m
eη +

N∑
j=1

αt−1,jΛj + ηΛk.

Introducing a Lagrange variable µ ≥ 0, the Lagrangian associated to the convex optimization prob-
lem minη+αt−1,k≥0 J(η) can be written as follows:

L(η, µ) = J(η)− µ(η + αt−1,k) with ∇ηL(η, µ) = J ′(η)− µ.
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By the KKT conditions, at the solution (η∗, µ∗), J ′(η∗) = µ∗ and µ∗(η∗ + αt−1,k) = 0. Thus,
either (µ∗ > 0) ⇔ (J ′(η∗) > 0) and η∗ = −αt−1,k, or µ∗ = 0 and η∗ is solution of the equation
J ′(η∗) = 0.

The condition J ′(η∗) > 0 for η∗ = −αt−1,k can be rewritten as

−(1− εt,k)
St

m
eαt−1,k + εt,k

St

m
e−αt−1,k + Λk > 0⇔ (1− εt,k)eαt−1,k − εt,ke−αt−1,k <

Λkm

St
.

J ′(η) = 0 can be written as the second-degree equation e2η + Λkm
Stεt,k

eη − 1−εt,k

εt,k
, which admits the

solution

eη = − Λkm

2Stεt,k
+

√[ Λkm

2Stεt,k

]2

+
1− εt,k

εt,k
⇔ η = log

[
− Λkm

2Stεt,k
+

√[ Λkm

2Stεt,k

]2

+
1− εt,k

εt,k

]
.

E.2.2 Logistic loss

In the case of the logistic loss, for any u ∈ R, Φ(−u) = log2(1 + e−u) and Φ′(−u) = 1
log 2

1
(1+eu) .

To determine the step size, we use the following general upper bound:

Φ(−u− v)− Φ(−u) = log2

[
1 + e−u + e−u−v − e−u

1 + e−u

]
= log2

[
1 +

e−v − 1
1 + eu

]
≤ e−v − 1

(log 2)(1 + eu)
= Φ′(−u)(e−v − 1).

Thus, we can write

F (αt−1 + ηek)− F (αt−1) ≤
1
m

m∑
i=1

∑
y 6=yi

Φ′(1− ft−1(xi, yi, y))(e−ηhk(xi,yi,y) − 1) + Λkη

=
1
m

m∑
i=1

∑
y 6=yi

Dt(i, y)St(e−ηhk(xi,yi,y) − 1) + Λkη.

To determine η, we can minimize this upper bound, or equivalently the following

1
m

m∑
i=1

∑
y 6=yi

Dt(i, y)Ste
−ηhk(xi,yi,y) + Λkη.

This expression is syntactically the same as (18) in the case of the exponential loss (modulo a term
not depending on η) with only the distribution weights Dt(i, y) and St being different. Thus, we
obtain immediately the same expressions for the step size in the case of the logistic loss but with
St =

∑m
i=1

1

1+eft−1(xi,yi,y)−1 and Dt(i, y) = 1
St

1

1+eft−1(xi,yi,y)−1 .

F MDeepBoostMaxSum

MDeepBoostMaxSum algorithm is derived by application of coordinate descent to Fmaxsum objective
function. Below we provide explicit expressions for the direction and step of the descent. Figure 2
gives the pseudocode of the MDeepBoostMaxSum algorithm.

F.1 Direction

For any j ∈ [1, N ], Fmaxsum(αt−1 + ηej) is given by

Fmaxsum(αt−1+ηej) =
1
m

m∑
i=1

Φ
(
1−

N∑
j=1

αt−1,jρhj (xi, yi)−ηρhj (xi, yi)
)

+
N∑

j=1

Λjαt−1,j +ηΛj .

(19)

18



Thus, for any j ∈ [1, N ], the directional derivative of Fmaxsum at αt−1 along ej can be expressed as
follows:

F ′
maxsum(αt−1, ej) =

1
m

m∑
i=1

(−ρhj
(xi, yi))Φ′

(
1−

N∑
j=1

αt−1,jρhj (xi, yi)
)

+ Λj

=
1
m

m∑
i=1

(−ρhj
(xi, yi))Dt(i)St + Λj =

St

m
(2εt,j − 1) + Λj ,

where for any t ∈ [1, T ], we denote by Dt the distribution over [1,m] defined for all i ∈ [1,m] by

Dt(i) =
Φ′

(
1−

∑N
j=1 αt−1,jρhj (xi, yi)

)
St

, (20)

with normalization factor St =
∑m

i=1 Φ′(1 −
∑N

j=1 αt−1,jρhj (xi, yi)). For any j ∈ [1, N ] and
s ∈ [1, T ], we also define the weighted error εs,j as follows:

εs,j =
1
2

[
1− E

i∼Ds

[
ρhs(xi, yi)

]]
. (21)

Thus, the direction k selected by MDeepBoostMaxSum at round t is given by k =
argminj∈[1,N ] εt,j + Λjm

2St
.

F.2 Step

Given the direction ek, the optimal step value η is given by argminη Fmaxsum(αt−1 + η ek). As
in the case of MDeepBoostSum, for the most general Φ, η can be found via a line search or other
numerical methods and in some special cases, we can derive a closed-form solution for the step by
minimizing an upper bound on Fmaxsum(αt−1 + η ek).

Following the same convexity argument as in Section E.2, we can write

F (αt−1 + ηek) ≤ 1
m

m∑
i=1

1 + ρhk
(xi, yi)

2
Φ

(
1−

N∑
j=1

αt−1,jρhj (xi, yi)− η
)

+
1
m

m∑
i=1

1− ρhk
(xi, yi)

2
Φ

(
1−

N∑
j=1

αt−1,jρhj
(xi, yi) + η

)

+
N∑

j=1

αt−1,jΛj + ηΛk.

Let J(η) denote that upper bound. We now examine solutions of the convex optimization problem
minη+αt−1,k≥0 J(η) in the case of exponential and logistic loss.

F.2.1 Exponential loss

In the case Φ = exp, arguing as in Section E.2.1, J(η) can be expressed as follows:

J(η) = (1− εt,k)
St

m
e−η + εt,k

St

m
eη +

N∑
j=1

αt−1,jΛj + ηΛk.

and the solution of the optimization problem minη+αt−1,k≥0 J(η) is given by η∗ = −αt−1,k if

(1− εt,k)eαt−1,k − εt,ke−αt−1,k <
Λkm

St
.

Otherwise, the solution is

η∗ = log

[
− Λkm

2Stεt,k
+

√[ Λkm

2Stεt,k

]2

+
1− εt,k

εt,k

]
.
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MDEEPBOOSTMAXSUM(S = ((x1, y1), . . . , (xm, ym)))
1 for i← 1 to m do
2 D1(i)← 1

m
3 for t← 1 to T do

4 k ← argmin
j∈[1,N ]

εt,j +
Λjm

2St

5 if
(
(1− εt,k)eαt−1,k − εt,ke−αt−1,k < Λkm

St

)
then

6 ηt ← −αt−1,k

7 else ηt ← log
[
− Λkm

2εtSt
+

√[
Λkm
2εtSt

]2 + 1−εt

εt

]
8 αt ← αt−1 + ηtek

9 St+1 ←
∑m

i=1 Φ′
(
1−

∑N
j=1 αt,jρhj

(xi, yi)
)

10 for i← 1 to m do

11 Dt+1(i)←
Φ′

(
1−

PN
j=1 αt,jρhj

(xi,yi)
)

St+1

12 f ←
∑N

j=1 αt,jhj

13 return f

Figure 2: Pseudocode of the MDeepBoostMaxSum algorithm for both the exponential loss and the
logistic loss. The expression of the weighted error εt,j is given in (21). In the generic case of
a surrogate loss Φ different from the exponential or logistic losses, ηt is found instead via a line
search or other numerical methods from ηt = argmaxη Fmaxsum(αt−1 + ηek).

F.2.2 Logistic loss

In the case of the logistic loss, we can argue as in Section E.2.2. In particular, we can write

F (αt−1 + ηek)− F (αt−1) ≤
1
m

m∑
i=1

Dt(i)St(e−ηρhk
(xi,yi) − 1) + Λkη.

As in the case of MDeepBoostSum algorithm with logistic loss, minimizing this upper bound, re-
sults in the same expressions for the step size eta as in the case of the exponential loss but with

normalization factor St =
∑m

i=1

(
1 + e

PN
j=1 αt−1,jρhj

(xi,yi)−1
)−1

and probability distribution

Dt(i) = 1
St

(
1 + e

PN
j=1 αt−1,jρhj

(xi,yi)−1
)−1

.

G MDeepBoostCompSum

In this section, we describe the details of the MDeepBoostCompSum algorithm which consists of the
application of coordinate descent to the Fcompsum objective function. Note that, in general, Fcompsum
needs not be a convex function. However, in the important special case where Φ is the logistic
function the objective does indeed define a convex optimization problem. Under this assumption,
we show that the resulting algorithm is identical to the MDeepBoostSum algorithm with only the
distribution weights Dt(i, y) and St being different.

G.1 Direction

For any j ∈ [1, N ], Fcompsum(αt−1 + ηej) is given by

Fsum(αt−1+ηej) =
1
m

m∑
i=1

Φ1

( ∑
y 6=yi

Φ2

(
1−ft−1(xi, yi, y)−ηhj(xi, yi, y)

))
+

N∑
j=1

Λjαt−1,j+ηΛj .

(22)
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Thus, for any j ∈ [1, N ], the directional derivative of Fcompsum at αt−1 along ej can be expressed as
follows in terms of εt,j :

1
m

m∑
i=1

Φ′1
( ∑

y 6=yi

Φ2

(
1− ft−1(xi, yi, y)

)) ∑
y 6=yi

(−hj(xi, yi, y))Φ′2
(
1− ft−1(xi, yi, y)

)
+ Λj

=
1
m

m∑
i=1

∑
y 6=yi

(−hj(xi, yi, y))Dt(i, y)St + Λj =
St

m
(2εt,j − 1) + Λj ,

where for any t ∈ [1, T ], we denote by Dt the distribution over [1,m] defined for all i ∈ [1,m] and
all y ∈ Y such that y 6= yi by

Dt(i, y) =
Φ′1

( ∑
y 6=yi

Φ2

(
1− ft−1(xi, yi, y)

))
Φ′2

(
1− ft−1(xi, yi, y)

)
St

, (23)

with normalization factor St =
∑m

i=1 Φ′1
( ∑

y 6=yi
Φ2

(
1− ft−1(xi, yi, y)

))
Φ′2

(
1− ft−1(xi, yi, y)

)
.

For any j ∈ [1, N ] and s ∈ [1, T ], we also define the weighted error εs,j as follows:

εs,j =
1
2

[
1− E

(i,y)∼Ds

[
hs(xi, yi, y)

]]
. (24)

Thus, the direction k selected at round t is given by k = argminj∈[1,N ] εt,j + Λjm
2St

.

G.2 Step

Given the direction ek, the optimal step value η is given by argminη Fcompsum(αt−1 + η ek). The
most general case can be handled via a line search or other numerical methods. However, we recall
that in this most general case objective of our problem need not be convex. In what follows, we
assume that Φ is the logistic loss function and show that for resulting convex optimization problem,
step can be chosen in the same way as for MDeepBoostSum algorithm of E.2.1.

To simplify the notation, for a fixed i, let u(y) = 1 − ft−1(xi, yi, y) and v(y) = −ηhj(xi, yi, y).
Then we can write

Φ1

( ∑
y 6=yi

Φ2(u(y) + v(y))
)
− Φ1

( ∑
y 6=yi

Φ2(u(y))
)

= log2

[
1 +

∑
y 6=yi

eu(y)(ev(y) − 1)

1 +
∑

y 6=yi
eu(y)

]

≤
∑

y 6=yi
eu(y)(ev(y) − 1)

1 +
∑

y 6=yi
eu(y)

.

This bound is precisely St

∑
y 6=yi
Dt(i, y)(e−ηhk(xi,yi,y) − 1) and we can write

F (αt−1 + ηek)− F (αt−1) ≤
1
m

m∑
i=1

∑
y 6=yi

Dt(i, y)St(e−ηhk(xi,yi,y) − 1) + Λkη.

To determine η, we can minimize this upper bound, or equivalently the following

1
m

m∑
i=1

∑
y 6=yi

Dt(i, y)Ste
−ηhk(xi,yi,y) + Λkη.

Arguing as in Section E.2.2, one can show that minimizing yields η∗ = −αt−1,k when

(1− εt,k)eαt−1,k − εt,ke−αt−1,k <
Λkm

St
.

and otherwise

η = log

[
− Λkm

2Stεt,k
+

√[ Λkm

2Stεt,k

]2

+
1− εt,k

εt,k

]
.

This shows that in the case of the logistic loss MDeepBoostCompSum is identical to MDeepBoost-
Sum algorithm with only the distribution weights Dt(i, y) and St being different.
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H MDeepBoostMax

MDeepBoostMax algorithm is derived by application of coordinate descent to Fmax objective func-
tion.

H.1 Direction and step

For simplicity we will assume that Φ is a twice differentiable strictly convex function. This
is a mild assumption which holds for both exponential and logistic loss functions. Let αt =
(αt,1, . . . , αt,N )> denote the vector obtained after t ≥ 1 iterations and let α0 = 0. Let ek de-
note the kth unit vector in RN , k ∈ [1, N ]. The direction ek and the step η selected at the tth round
are those minimizing Fmax(αt−1 + ηek), that is

Fmax(αt−1 + ηek) =
1
m

m∑
i=1

max
y 6=yi

Φ
(
1− ft−1(xi, yi, y)− ηhk(xi, yi, y)

)
+

∑
j 6=k

Λjαt−1,j + Λkαt−1,k + η. (25)

We follow the definition of maximum coordinate descent for non-differentiable convex functions
Cortes et al. [2014]. In view of that, at each iteration t ≥ 1, the direction ek selected by coordi-
nate descent with maximum descent coordinate is k = argmaxj∈[1,N ] |δFmax(αt−1, ej)|, where
δFmax(αt−1, ej) is the element of the sub-gradient of Fmax along ej that is the closest to 0.

For any i ∈ [1,m], let Yt,i = argmaxy 6=yi
Φ(1 − ft−1(xi, yi, y)) and φi be defined by φi(αt−1 +

ηej) = maxy 6=yi Φ
(
1 − ft−1(xi, yi, y) − ηhj(xi, yi, y)

)
. Then, since the right-derivative of φi at

αt−1 along the direction ej is the largest element of the sub-differential of φi at αt−1 and sub-
differential of φi is a convex hull of d

dη Φ
(
1− ft−1(xi, yi, y)− ηhj(xi, yi, y)

)∣∣
η=0

for y ∈ Yt,i, we
can write

φ′i,+(αt−1, ej) = max
y∈Yt,i

−hj(xi, yi, y)Φ′
(
1− ft−1(xi, yi, y)

)
= Φ′t−1,i max

y∈Yt,i

{−hj(xi, yi, y)},

where Φ′t−1,i = maxy 6=yi Φ′
(
1 − ft−1(xi, yi, y)

)
. The last equality is a consequence of the fact

that Φ′
(
1 − ft−1(xi, yi, y)

)
= maxy 6=yi Φ′

(
1 − ft−1(xi, yi, y)

)
for all y ∈ Yt,i and hence can be

factored out of maxy∈Yt,i
−hj(xi, yi, y)Φ′

(
1 − ft−1(xi, yi, y)

)
. This is indeed the case since for a

twice differentiable strictly convex function Φ, Φ′′ > 0 and Φ′ is strictly increasing. Combining this
with monotonicity of Φ we have

Yt,i = argmax
y 6=yi

Φ(1− ft−1(xi, yi, y)) = argmax
y 6=yi

Φ′(1− ft−1(xi, yi, y)).

Similarly, we can write
φ′i,−(αt−1, ej) = min

y∈Yt,i

−hj(xi, yi, y)Φ′
(
1− ft−1(xi, yi, y)

)
= Φ′t−1,i min

y∈Yi

{−hj(xi, yi, y)}.

In view of these identities, the right- and left-derivatives of F along ej are given by

F ′
max,+(αt−1, ej) =

1
m

m∑
i=1

Φ′t−1,i max
y∈Yt,i

{−hj(xi, yi, y)}+ Λj ,

F ′
max,−(αt−1, ej) =

1
m

m∑
i=1

Φ′t−1,i min
y∈Yt,i

{−hj(xi, yi, y)}+ Λj .

For any t ∈ [1, T ], we denote by Dt the distribution defined by

Dt(i) =
maxy 6=yi Φ′

(
1− ft−1(xi, yi, y)

)
St

, (26)

where St is a normalization factor, St =
∑m

i=1 maxy 6=yi Φ′
(
1− ft−1(xi, yi, y)). For any s ∈ [1, T ]

and j ∈ [1, N ], we denote by ε+s,j and ε−s,j the following weighted errors of hypothesis hj for the
distribution Ds, for s ∈ [1, T ]:

ε+s,j =
1
2

[
1− E

i∼Ds

[ min
y∈Ys,i

hj(xi, yi, y)]
]

ε−s,j =
1
2

[
1− E

i∼Ds

[ max
y∈Ys,i

hj(xi, yi, y)]
]
. (27)
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MDEEPBOOSTMAX(S = ((x1, y1), . . . , (xm, ym)))
1 for i← 1 to m do
2 D1(i)← 1

m
3 Y1,i ← Y − {yi}
4 for t← 1 to T do
5 for j ← 1 to N do
6 if 1

2 − ε+t,j ≥
Λjm
2St

then
7 dj ← St

m (2ε+t,j − 1) + Λj

8 elseif 1
2 − ε−t,j ≤

Λjm
2St

then
9 dj ← St

m (2ε−t,j − 1) + Λj

10 else dj ← 0
11 k ← argmax

j∈[1,N ]

|dj |

12 ηt ← argmin
η≥−αk

Fmax(αt−1 + η ek)

13 αt ← αt−1 + ηtek

14 St+1 ←
∑m

i=1 maxy 6=yi Φ′
(
1− ft−1(xi, yi, y)

)
15 for i← 1 to m do

16 Dt+1(i)←
maxy 6=yi

Φ′
(
1−ft−1(xi,yi,y)

)
St+1

17 Yt,i ← argmax
y 6=yi

Φ
(
1− ft−1(xi, yi, y)

)
18 f ←

∑N
j=1 αt,jhj

19 return f

Figure 3: Pseudocode of the MDeepBoostMax algorithm. The expression of the weighted errors ε+t,j
and ε−t,j is given in (27) and ηt is found via a line search or other numerical methods. Note that the
active label sets Yt,i are needed for finding ε+t,j and ε−t,j .

Since Φ′t−1,i = StDt(i), we can express the right- and left-derivative in terms of ε+t,j and ε−t,j :

F ′
max,+(αt−1, ej) =

St

m
[2ε+t,j − 1] + Λj

F ′
max,−(αt−1, ej) =

St

m
[2ε−t,j − 1] + Λj .

Therefore, we can write

δFmax(αt−1, ej) =


St

m [2ε+t,j − 1] + Λj if 1
2 − ε+t,j ≥

Λjm
2St

St

m [2ε−t,j − 1] + Λj else if 1
2 − ε−t,j ≤

Λjm
2St

0 otherwise,
(28)

and the direction k selected at round t is given by k = argmaxj∈[1,N ] |δFmax(αt−1, ej)|. Given
the direction ek, the optimal step value η is given by argminη≥−αk

Fmax(αt−1 + η ek). This is a
convex optimization problem that can be solved via a line search or other numerical methods.

Figure 3 gives the pseudocode of the MDeepBoostMax algorithm.

Note that convergence guarantees of Theorem 2 do not apply to Fmax objective since the presence
of the max operator makes it non-differentiable. In the most general setting of non-differentiable
continuous objective functions, it is possible to construct examples where coordinate descent algo-
rithm will get “stuck” and never reach the global minimum. More precisely, for a non-differentiable
convex objective function F the set of points such that δF (α∗, ej) = 0 for all j ∈ [1, N ] and yet
F (α∗) > minα F (α) may not be empty. One way to address this problem and prevent coordi-
nate descent from being “stuck” is to randomize it. Namely, every time we reach a point where
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δF (α, ej) = 0 for all j ∈ [1, N ] we perturb α by a small random vector α0 and restart coordinate
descent procedure from α + α0.

I Convergence of coordinate descent

Theorem 2. Assume that Φ is twice differentiable and that Φ′′(u) > 0 for all u ∈ R. Then, the
projected coordinate descent algorithm applied to F converges to the solution α∗ of the optimization
maxα≥0 F (α) for F = Fsum, F = Fmaxsum, or F = Fcompsum. If additionally Φ is strongly convex
over the path of the iterates αt, then there exists τ > 0 and γ > 0 such that for all t > τ ,

F (αt+1)− F (α∗) ≤ (1− 1
γ )(F (αt)− F (α∗)). (29)

Proof. We present the proof in the case F = Fsum, the proof for the other cases is similar. Let H
be the matrix in Rm(c−1)×N defined by H(i,c),j = hj(xi, yi, y) for all i ∈ [1,m], y 6= yi, and
j ∈ [1, N ], and let e(i,y) be the (i, y)th unit vector in Rm(c−1). Then, for any α, e>(i,y)Hα =∑N

j=1 αjhj(xi, yi, y). Thus, we can write for any α ∈ RN ,

Fsum(α) = G(Hα) + Λ>α,

where Λ = (Λ1, . . . ,ΛN )> and where G is the function defined by

G(u) =
1
m

m∑
i=1

∑
y 6=yi

Φ(1− e>(i,y)u) =
1
m

m∑
i=1

∑
y 6=yi

Φ(1− u(i,y)),

for all u ∈ Rm(c−1) with u(i,y) its (i, y)th coordinate. G is twice differentiable since Φ is and
∇2G(u) is a diagonal matrix with diagonal entries 1

mΦ′′(1 − u(i,y)) > 0 for all i ∈ [1,m] and
y 6= yi. Thus, ∇2G(Hα) is positive definite for all α. The conditions of Theorem 2.1 of [Luo and
Tseng, 1992] are therefore satisfied for the optimization problem

min
α≥0

G(Hα) + Λ>α,

thereby guaranteeing the convergence of the projected coordinate descent method applied to Fsum. If
additionally F is strongly convex over the sequence of αts, then, by the results of [Luo and Tseng,
1992][page 26], the inequality (10) holds for the projected coordinate method that we are using
which selects the best direction at each round, as with the Gauss-Southwell method.

Note that the result holds under the weaker condition that Φ′′(1−
∑N

j=1 α∗jhj(xi, yi, y)) > 0 instead
of Φ′′(u) > 0 for all u, since the assumptions of Theorem 2.1 of [Luo and Tseng, 1992] are also
satisfied in that case.
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J Upper bound on Rademacher complexity

In this section we prove Eq. (13), an upper bound on the Rademacher complexity of Tn. We have

R(Π1(Tn)) =
1
m

E
σ

 sup
t,h,y∈Y

m∑
i=1

σi

∑
l∈Leaves(t)

1t(x)=l hl(y)


=

1
m

E
σ

sup
t

sup
h,y∈Y

∑
l∈Leaves(t)

hl(y)
m∑

i=1

σi1xi∈l


=

1
m

E
σ

sup
t

∑
l∈Leaves(t)

[
m∑

i=1

σi1xi∈l∈Leaves(t)

]
+

 (take hl(y) = 0 or hl(y) = 1)

≤ 1
m

E
σ

sup
t

∑
l∈Leaves(t)

∣∣∣∣∣
m∑

i=1

σi1xi∈l

∣∣∣∣∣


=
1
m

E
σ

 sup
t,sl∈{+1,−1}

∑
l∈Leaves(t)

sl

m∑
i=1

σi1xi∈l


=

1
m

E
σ

 sup
t,sl∈{+1,−1}

m∑
i=1

σi

∑
l∈Leaves(t)

sl1xi∈l

 .

This last expression coincides with the Rademacher complexity of decision trees in the binary clas-
sification case returning a value in {+1,−1}. The VC-dimension of this family can be bounded
by (2n + 1) log2(d + 2) (see for example [Mohri et al., 2012]). Thus, by Massart’s lemma, Eq. 13
follows.

K Relationship with other algorithms

The view of boosting as coordinate descent applied to an objective function was pointed out and
studied in detail by several authors in the past [Friedman et al., 1998, Duffy and Helmbold, 1999,
Mason et al., 1999, Collins et al., 2002].

As pointed out earlier, the objective function Fmax is the tightest convex surrogate among those
we discussed and has favorable H-consistency properties. However, we are not aware of any prior
algorithms based on this objective function, even without regularization (Λj = 0 for all j). Similarly,
the objective function Fmaxsum leads to a very efficient training algorithm since it is based on base
classifier margins ρhi

that can all be pre-computed before training begins, but we are not aware
of prior work based on that objective. Thus, the corresponding algorithms MDeepBoostMax and
MDeepBoostMaxSum are both entirely new.

Certain special cases of our algorithms coincide with well-known multi-class classification algo-
rithms from the literature. For Λj = 0, j ∈ [1, N ] and the exponential loss (Φ(−u) = exp(−u)), the
MDeepBoostSum algorithm is equivalent to AdaBoost.MR [Freund and Schapire, 1997, Schapire
and Singer, 1999], a multi-class version of AdaBoost. For Λj = 0, j ∈ [1, N ] and the logis-
tic loss (Φ(−u) = log2(1 + exp(−u + 1))), the MDeepBoostCompSum algorithm is equivalent
to additive multinomial logistic regression (i.e., a conditional maximum entropy model) where
Φ1(x) = log(1 + x) and Φ2(x) = exp(x + 1)) (see Friedman [2000]). For the same Φ, Φ1 and
Φ2, when λ = 0 and β 6= 0 the MDeepBoostCompSum algorithm is equivalent to the multi-class
logistic regression algorithm with L1-norm regularization studied by Duchi and Singer [2009].

Other existing multi-class classification algorithms are related to the ones we present here, but with
key differences. For example, the MDeepBoostCompSum algorithm is similar to several algorithms
of Zou et al. [2008], except that they do not use regularization and additionally require the consis-
tency condition

∑
yY f(x, y) = 0. Bühlmann and Yu [2003] also describe a multi-class classifica-
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tion algorithm based on boosting, except they reduce the problem to binary classification using a
one-versus-all approach, use the square loss for Φ, and do not use regularization.

In the special case of binary classification, our algorithms are of course related to the binary classi-
fication deep boosting [Cortes et al., 2014] and to several boosting algorithms introduced in the past
[Freund and Schapire, 1997, Kivinen and Warmuth, 1999, Rätsch et al., 2001a, Rätsch and War-
muth, 2002, 2005, Warmuth et al., 2006] including boosting with L1-norm regularization [Rätsch
et al., 2001a] (see [Schapire and Freund, 2012] for a more extended list of references), as discussed
by Cortes et al. [2014].

L Dataset statistics

Table 4: Dataset statistics.

Data set Classes Examples Features
abalone 29 4177 8
handwritten 10 5620 64
letters 26 20000 16
pageblocks 5 5473 10
pendigits 10 10992 16
satimage 6 6435 36
statlog 7 2310 19
yeast 10 1484 8
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