
Multi-Class Deep Boosting

Vitaly Kuznetsov
Courant Institute
251 Mercer Street

New York, NY 10012
vitaly@cims.nyu.edu

Mehryar Mohri
Courant Institute & Google Research

251 Mercer Street
New York, NY 10012
mohri@cims.nyu.edu

Umar Syed
Google Research
76 Ninth Avenue

New York, NY 10011
usyed@google.com

Abstract

We present new ensemble learning algorithms for multi-class classification. Our
algorithms can use as a base classifier set a family of deep decision trees or other
rich or complex families and yet benefit from strong generalization guarantees.
We give new data-dependent learning bounds for convex ensembles in the multi-
class classification setting expressed in terms of the Rademacher complexities of
the sub-families composing the base classifier set, and the mixture weight assigned
to each sub-family. These bounds are finer than existing ones both thanks to an
improved dependency on the number of classes and, more crucially, by virtue of
a more favorable complexity term expressed as an average of the Rademacher
complexities based on the ensemble’s mixture weights. We introduce and discuss
several new multi-class ensemble algorithms benefiting from these guarantees,
prove positive results for the H-consistency of several of them, and report the
results of experiments showing that their performance compares favorably with
that of multi-class versions of AdaBoost and Logistic Regression and their L1-
regularized counterparts.

1 Introduction

Devising ensembles of base predictors is a standard approach in machine learning which often helps
improve performance in practice. Ensemble methods include the family of boosting meta-algorithms
among which the most notable and widely used one is AdaBoost [Freund and Schapire, 1997],
also known as forward stagewise additive modeling [Friedman et al., 1998]. AdaBoost and its
other variants learn convex combinations of predictors. They seek to greedily minimize a convex
surrogate function upper bounding the misclassification loss by augmenting, at each iteration, the
current ensemble, with a new suitably weighted predictor.

One key advantage of AdaBoost is that, since it is based on a stagewise procedure, it can learn
an effective ensemble of base predictors chosen from a very large and potentially infinite family,
provided that an efficient algorithm is available for selecting a good predictor at each stage. Fur-
thermore, AdaBoost and its L1-regularized counterpart [Rätsch et al., 2001a] benefit from favorable
learning guarantees, in particular theoretical margin bounds [Schapire et al., 1997, Koltchinskii and
Panchenko, 2002]. However, those bounds depend not just on the margin and the sample size, but
also on the complexity of the base hypothesis set, which suggests a risk of overfitting when using too
complex base hypothesis sets. And indeed, overfitting has been reported in practice for AdaBoost in
the past [Grove and Schuurmans, 1998, Schapire, 1999, Dietterich, 2000, Rätsch et al., 2001b].

Cortes, Mohri, and Syed [2014] introduced a new ensemble algorithm, DeepBoost, which they
proved to benefit from finer learning guarantees, including favorable ones even when using as base
classifier set relatively rich families, for example a family of very deep decision trees, or other simi-
larly complex families. In DeepBoost, the decisions in each iteration of which classifier to add to the
ensemble and which weight to assign to that classifier, depend on the (data-dependent) complexity
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of the sub-family to which the classifier belongs – one interpretation of DeepBoost is that it applies
the principle of structural risk minimization to each iteration of boosting. Cortes, Mohri, and Syed
[2014] further showed that empirically DeepBoost achieves a better performance than AdaBoost,
Logistic Regression, and their L1-regularized variants. The main contribution of this paper is an
extension of these theoretical, algorithmic, and empirical results to the multi-class setting.

Two distinct approaches have been considered in the past for the definition and the design of boosting
algorithms in the multi-class setting. One approach consists of combining base classifiers mapping
each example x to an output label y. This includes the SAMME algorithm [Zhu et al., 2009] as
well as the algorithm of Mukherjee and Schapire [2013], which is shown to be, in a certain sense,
optimal for this approach. An alternative approach, often more flexible and more widely used in
applications, consists of combining base classifiers mapping each pair (x, y) formed by an example
x and a label y to a real-valued score. This is the approach adopted in this paper, which is also
the one used for the design of AdaBoost.MR [Schapire and Singer, 1999] and other variants of that
algorithm.

In Section 2, we prove a novel generalization bound for multi-class classification ensembles that
depends only on the Rademacher complexity of the hypothesis classes to which the classifiers in the
ensemble belong. Our result generalizes the main result of Cortes et al. [2014] to the multi-class set-
ting, and also represents an improvement on the multi-class generalization bound due to Koltchinskii
and Panchenko [2002], even if we disregard our finer analysis related to Rademacher complexity. In
Section 3, we present several multi-class surrogate losses that are motivated by our generalization
bound, and discuss and compare their functional and consistency properties. In particular, we prove
that our surrogate losses are realizable H-consistent, a hypothesis-set-specific notion of consistency
that was recently introduced by Long and Servedio [2013]. Our results generalize those of Long and
Servedio [2013] and admit simpler proofs. We also present a family of multi-class DeepBoost learn-
ing algorithms based on each of these surrogate losses, and prove general convergence guarantee for
them. In Section 4, we report the results of experiments demonstrating that multi-class DeepBoost
outperforms AdaBoost.MR and multinomial (additive) logistic regression, as well as their L1-norm
regularized variants, on several datasets.

2 Multi-class data-dependent learning guarantee for convex ensembles

In this section, we present a data-dependent learning bound in the multi-class setting for convex
ensembles based on multiple base hypothesis sets. Let X denote the input space. We denote by
Y = {1, . . . , c} a set of c ≥ 2 classes. The label associated by a hypothesis f : X × Y → R to
x ∈ X is given by argmaxy∈Y f(x, y). The margin ρf (x, y) of the function f for a labeled example
(x, y) ∈ X × Y is defined by

ρf (x, y) = f(x, y)−max
y′ 6=y

f(x, y′). (1)

Thus, f misclassifies (x, y) iff ρf (x, y) ≤ 0. We consider p families H1, . . . ,Hp of functions
mapping from X × Y to [0, 1] and the ensemble family F = conv(

⋃p
k=1 Hk), that is the family of

functions f of the form f =
∑T

t=1 αtht, where α = (α1, . . . , αT ) is in the simplex ∆ and where, for
each t ∈ [1, T ], ht is in Hkt for some kt ∈ [1, p]. We assume that training and test points are drawn
i.i.d. according to some distribution D over X × Y and denote by S = ((x1, y1), . . . , (xm, ym)) a
training sample of size m drawn according to Dm. For any ρ > 0, the generalization error R(f), its
ρ-margin error Rρ(f) and its empirical margin error are defined as follows:

R(f) = E
(x,y)∼D

[1ρf (x,y)≤0], Rρ(f) = E
(x,y)∼D

[1ρf (x,y)≤ρ], and R̂S,ρ(f) = E
(x,y)∼S

[1ρf (x,y)≤ρ],

(2)
where the notation (x, y) ∼ S indicates that (x, y) is drawn according to the empirical distribution
defined by S. For any family of hypotheses G mapping X × Y to R, we define Π1(G) by

Π1(G) = {x 7→ h(x, y) : y ∈ Y, h ∈ G}. (3)

The following theorem gives a margin-based Rademacher complexity bound for learning with en-
sembles of base classifiers with multiple hypothesis sets. As with other Rademacher complexity
learning guarantees, our bound is data-dependent, which is an important and favorable characteris-
tic of our results.
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Theorem 1. Assume p > 1 and let H1, . . . ,Hp be p families of functions mapping from X × Y to
[0, 1]. Fix ρ > 0. Then, for any δ > 0, with probability at least 1− δ over the choice of a sample S

of size m drawn i.i.d. according to D, the following inequality holds for all f =
∑T

t=1 αtht ∈ F:

R(f) ≤ R̂S,ρ(f)+
8c

ρ

T∑
t=1

αtRm(Π1(Hkt
))+

2
cρ

√
log p

m
+

√⌈
4
ρ2 log

(
c2ρ2m
4 log p

)⌉ log p

m
+

log 2
δ

2m
,

Thus, R(f) ≤ R̂S,ρ(f) + 8c
ρ

∑T
t=1 αtRm(Hkt) + O

(√
log p

ρ2m
log

[
ρ2c2m
4 log p

])
.

The full proof of theorem 3 is given in Appendix B. Even for p = 1, that is for the special case of
a single hypothesis set, our analysis improves upon the multi-class margin bound of Koltchinskii
and Panchenko [2002] since our bound admits only a linear dependency on the number of classes
c instead of a quadratic one. However, the main remarkable benefit of this learning bound is that
its complexity term admits an explicit dependency on the mixture coefficients αt. It is a weighted
average of Rademacher complexities with mixture weights αt, t ∈ [1, T ]. Thus, the second term
of the bound suggests that, while some hypothesis sets Hk used for learning could have a large
Rademacher complexity, this may not negatively affect generalization if the corresponding total
mixture weight (sum of αts corresponding to that hypothesis set) is relatively small. Using such
potentially complex families could help achieve a better margin on the training sample.

The theorem cannot be proven via the standard Rademacher complexity analysis of Koltchinskii and
Panchenko [2002] since the complexity term of the bound would then be Rm(conv(

⋃p
k=1 Hk)) =

Rm(
⋃p

k=1 Hk) which does not admit an explicit dependency on the mixture weights and is lower
bounded by

∑T
t=1 αtRm(Hkt). Thus, the theorem provides a finer learning bound than the one

obtained via a standard Rademacher complexity analysis.

3 Algorithms

In this section, we will use the learning guarantees just described to derive several new ensemble
algorithms for multi-class classification.

3.1 Optimization problem

Let H1, . . . ,Hp be p disjoint families of functions taking values in [0, 1] with increasing Rademacher
complexities Rm(Hk), k ∈ [1, p]. For any hypothesis h ∈ ∪p

k=1Hk, we denote by d(h) the index
of the hypothesis set it belongs to, that is h ∈ Hd(h). The bound of Theorem 3 holds uniformly for
all ρ > 0 and functions f ∈ conv(

⋃p
k=1 Hk). Since the last term of the bound does not depend on

α, it suggests selecting α that would minimize:

G(α) =
1
m

m∑
i=1

1ρf (xi,yi)≤ρ +
8c

ρ

T∑
t=1

αtrt,

where rt = Rm(Hd(ht)) and α ∈ ∆.1 Since for any ρ > 0, f and f/ρ admit the same generalization
error, we can instead search for α ≥ 0 with

∑T
t=1 αt ≤ 1/ρ, which leads to

min
α≥0

1
m

m∑
i=1

1ρf (xi,yi)≤1 + 8c

T∑
t=1

αtrt s.t.
T∑

t=1

αt ≤
1
ρ
. (4)

The first term of the objective is not a convex function of α and its minimization is known to be
computationally hard. Thus, we will consider instead a convex upper bound. Let u 7→ Φ(−u)
be a non-increasing convex function upper-bounding u 7→ 1u≤0 over R. Φ may be selected to be

1 The condition
PT

t=1 αt = 1 of Theorem 3 can be relaxed to
PT

t=1 αt ≤ 1. To see this, use for example
a null hypothesis (ht = 0 for some t).
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for example the exponential function as in AdaBoost [Freund and Schapire, 1997] or the logistic
function. Using such an upper bound, we obtain the following convex optimization problem:

min
α≥0

1
m

m∑
i=1

Φ
(
1− ρf (xi, yi)

)
+ λ

T∑
t=1

αtrt s.t.
T∑

t=1

αt ≤
1
ρ
, (5)

where we introduced a parameter λ ≥ 0 controlling the balance between the magnitude of the values
taken by function Φ and the second term.2 Introducing a Lagrange variable β ≥ 0 associated to the
constraint in (5), the problem can be equivalently written as

min
α≥0

1
m

m∑
i=1

Φ
(
1− min

y 6=yi

[ T∑
t=1

αtht(xi, yi)− αtht(xi, y)
])

+
T∑

t=1

(λrt + β)αt.

Here, β is a parameter that can be freely selected by the algorithm since any choice of its value
is equivalent to a choice of ρ in (5). Since Φ is a non-decreasing function, the problem can be
equivalently written as

min
α≥0

1
m

m∑
i=1

max
y 6=yi

Φ
(
1−

[ T∑
t=1

αtht(xi, yi)− αtht(xi, y)
])

+
T∑

t=1

(λrt + β)αt.

Let {h1, . . . , hN} be the set of distinct base functions, and let Fmax be the objective function based
on that expression:

Fmax(α) =
1
m

m∑
i=1

max
y 6=yi

Φ
(
1−

N∑
j=1

αjhj(xi, yi, y)
)

+
N∑

j=1

Λjαj , (6)

with α = (α1, . . . , αN ) ∈ RN , hj(xi, yi, y) = hj(xi, yi)−hj(xi, y), and Λj = λrj +β for all j ∈
[1, N ]. Then, our optimization problem can be rewritten as minα≥0 Fmax(α). This defines a convex
optimization problem since the domain {α ≥ 0} is a convex set and since Fmax is convex: each
term of the sum in its definition is convex as a pointwise maximum of convex functions (composition
of the convex function Φ with an affine function) and the second term is a linear function of α. In
general, Fmax is not differentiable even when Φ is, but, since it is convex, it admits a sub-differential
at every point. Additionally, along each direction, Fmax admits left and right derivatives both non-
increasing and a differential everywhere except for a set that is at most countable.

3.2 Alternative objective functions

We now consider the following three natural upper bounds on Fmax which admit useful properties
that we will discuss later, the third one valid when Φ can be written as the composition of two
function Φ1 and Φ2 with Φ1 a non-increasing function:

Fsum(α) =
1
m

m∑
i=1

∑
y 6=yi

Φ
(
1−

N∑
j=1

αjhj(xi, yi, y)
)

+
N∑

j=1

Λjαj (7)

Fmaxsum(α) =
1
m

m∑
i=1

Φ
(
1−

N∑
j=1

αjρhj
(xi, yi)

)
+

N∑
j=1

Λjαj (8)

Fcompsum(α) =
1
m

m∑
i=1

Φ1

( ∑
y 6=yi

Φ2

(
1−

N∑
j=1

αjhj(xi, yi, y)
))

+
N∑

j=1

Λjαj . (9)

Fsum is obtained from Fmax simply by replacing in the definition of Fmax the max operator by a
sum. Clearly, function Fsum is convex and inherits the differentiability properties of Φ. A drawback
of Fsum is that for problems with very large c as in structured prediction, the computation of the sum

2Note that this is a standard practice in the field of optimization. The optimization problem in (4) is equiva-
lent to a vector optimization problem, where (

Pm
i=1 1ρf (xi,yi)≤1,

PT
t=1 αtrt) is minimized over α. The latter

problem can be scalarized leading to the introduction of a parameter λ in (5).
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may require resorting to approximations. Fmaxsum is obtained from Fmax by noticing that, by the
sub-additivity of the max operator, the following inequality holds:

max
y 6=yi

N∑
j=1

−αjhj(xi, yi, y) ≤
N∑

j=1

max
y 6=yi

−αjhj(xi, yi, y) =
N∑

j=1

αjρhj (xi, yi).

As with Fsum, function Fmaxsum is convex and admits the same differentiability properties as Φ.
Unlike Fsum, Fmaxsum does not require computing a sum over the classes. Furthermore, note that the
expressions ρhj

(xi, yi), i ∈ [1,m], can be pre-computed prior to the application of any optimization
algorithm. Finally, for Φ = Φ1 ◦Φ2 with Φ1 non-increasing, the max operator can be replaced by a
sum before applying φ1, as follows:

max
y 6=yi

Φ
(
1− f(xi, yi, y)

)
= Φ1

(
max
y 6=yi

Φ2

(
1− f(xi, yi, y)

))
≤ Φ1

( ∑
y 6=yi

Φ2

(
1− f(xi, yi, y)

))
,

where f(xi, yi, y) =
∑N

j=1 αjhj(xi, yi, y). This leads to the definition of Fcompsum.

In Appendix C, we discuss the consistency properties of the loss functions just introduced. In partic-
ular, we prove that the loss functions associated to Fmax and Fsum are realizable H-consistent (see
Long and Servedio [2013]) in the common cases where the exponential or logistic losses are used
and that, similarly, in the common case where Φ1(u) = log(1 + u) and Φ2(u) = exp(u + 1), the
loss function associated to Fcompsum is H-consistent.

Furthermore, in Appendix D, we show that, under some mild assumptions, the objective functions
we just discussed are essentially within a constant factor of each other. Moreover, in the case of
binary classification all of these objectives coincide.

3.3 Multi-class DeepBoost algorithms

In this section, we discuss in detail a family of multi-class DeepBoost algorithms, which are derived
by application of coordinate descent to the objective functions discussed in the previous paragraphs.
We will assume that Φ is differentiable over R and that Φ′(u) 6= 0 for all u. This condition is not
necessary, in particular, our presentation can be extended to non-differentiable functions such as the
hinge loss, but it simplifies the presentation. In the case of the objective function Fmaxsum, we will
assume that both Φ1 and Φ2, where Φ = Φ1 ◦Φ2, are differentiable. Under these assumptions, Fsum,
Fmaxsum, and Fcompsum are differentiable. Fmax is not differentiable due to the presence of the max
operators in its definition, but it admits a sub-differential at every point.

For convenience, let αt = (αt,1, . . . , αt,N )> denote the vector obtained after t ≥ 1 iterations and
let α0 = 0. Let ek denote the kth unit vector in RN , k ∈ [1, N ]. For a differentiable objective
F , we denote by F ′(α, ej) the directional derivative of F along the direction ej at α. Our co-
ordinate descent algorithm consists of first determining the direction of maximal descent, that is
k = argmaxj∈[1,N ] |F ′(αt−1, ej)|, next of determining the best step η along that direction that
preserves non-negativity of α, η = argminαt−1+ηek≥0 F (αt−1 + ηek), and updating αt−1 to
αt = αt−1 + ηek. We will refer to this method as projected coordinate descent. The following
theorem provides a convergence guarantee for our algorithms in that case.
Theorem 2. Assume that Φ is twice differentiable and that Φ′′(u) > 0 for all u ∈ R. Then, the
projected coordinate descent algorithm applied to F converges to the solution α∗ of the optimization
maxα≥0 F (α) for F = Fsum, F = Fmaxsum, or F = Fcompsum. If additionally Φ is strongly convex
over the path of the iterates αt, then there exists τ > 0 and γ > 0 such that for all t > τ ,

F (αt+1)− F (α∗) ≤ (1− 1
γ )(F (αt)− F (α∗)). (10)

The proof is given in Appendix I and is based on the results of Luo and Tseng [1992]. The theorem
can in fact be extended to the case where instead of the best direction, the derivative for the direc-
tion selected at each round is within a constant threshold of the best [Luo and Tseng, 1992]. The
conditions of Theorem 2 hold for many cases in practice, in particular in the case of the exponential
loss (Φ = exp) or the logistic loss (Φ(−x) = log2(1 + e−x)). In particular, linear convergence is
guaranteed in those cases since both the exponential and logistic losses are strongly convex over a
compact set containing the converging sequence of αts.

5



MDEEPBOOSTSUM(S = ((x1, y1), . . . , (xm, ym)))
1 for i← 1 to m do
2 for y ∈ Y − {yi} do
3 D1(i, y)← 1

m(c−1)

4 for t← 1 to T do

5 k ← argmin
j∈[1,N ]

εt,j +
Λjm

2St

6 if
(
(1− εt,k)eαt−1,k − εt,ke−αt−1,k < Λkm

St

)
then

7 ηt ← −αt−1,k

8 else ηt ← log
[
− Λkm

2εtSt
+

√[
Λkm
2εtSt

]2 + 1−εt

εt

]
9 αt ← αt−1 + ηtek

10 St+1 ←
∑m

i=1

∑
y 6=yi

Φ′
(
1−

∑N
j=1 αt,jhj(xi, yi, y)

)
11 for i← 1 to m do
12 for y ∈ Y − {yi} do

13 Dt+1(i, y)← Φ′
(
1−

PN
j=1 αt,jhj(xi,yi,y)

)
St+1

14 f ←
∑N

j=1 αt,jhj

15 return f

Figure 1: Pseudocode of the MDeepBoostSum algorithm for both the exponential loss and the lo-
gistic loss. The expression of the weighted error εt,j is given in (12).

We will refer to the algorithm defined by projected coordinate descent applied to Fsum by MDeep-
BoostSum, to Fmaxsum by MDeepBoostMaxSum, to Fcompsum by MDeepBoostCompSum, and to
Fmax by MDeepBoostMax. In the following, we briefly describe MDeepBoostSum, including its
pseudocode. We give a detailed description of all of these algorithms in the supplementary mate-
rial: MDeepBoostSum (Appendix E), MDeepBoostMaxSum (Appendix F), MDeepBoostCompSum
(Appendix G), MDeepBoostMax (Appendix H).

Define ft−1 =
∑N

j=1 αt−1,jhj . Then, Fsum(αt−1) can be rewritten as follows:

Fsum(αt−1) =
1
m

m∑
i=1

∑
y 6=yi

Φ
(
1− ft−1(xi, yi, y)

)
+

N∑
j=1

Λjαt−1,j .

For any t ∈ [1, T ], we denote by Dt the distribution over [1,m]× [1, c] defined for all i ∈ [1,m] and
y ∈ Y − {yi} by

Dt(i, y) =
Φ′

(
1− ft−1(xi, yi, y)

)
St

, (11)

where St is a normalization factor, St =
∑m

i=1

∑
y 6=yi

Φ′(1 − ft−1(xi, yi, y)). For any j ∈ [1, N ]
and s ∈ [1, T ], we also define the weighted error εs,j as follows:

εs,j =
1
2

[
1− E

(i,y)∼Ds

[
hj(xi, yi, y)

]]
. (12)

Figure 1 gives the pseudocode of the MDeepBoostSum algorithm. The details of the derivation of
the expressions are given in Appendix E. In the special cases of the exponential loss (Φ(−u) =
exp(−u)) or the logistic loss (Φ(−u) = log2(1 + exp(−u))), a closed-form expression is given
for the step size (lines 6-8), which is the same in both cases (see Sections E.2.1 and E.2.2). In the
generic case, the step size can be found using a line search or other numerical methods.

The algorithms presented above have several connections with other boosting algorithms, particu-
larly in the absence of regularization. We discuss these connections in detail in Appendix K.
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4 Experiments

The algorithms presented in the previous sections can be used with a variety of different base clas-
sifier sets. For our experiments, we used multi-class binary decision trees. A multi-class binary
decision tree in dimension d can be defined by a pair (t,h), where t is a binary tree with a variable-
threshold question at each internal node, e.g., Xj ≤ θ, j ∈ [1, d], and h = (hl)l∈Leaves(t) a vector of
distributions over the leaves Leaves(t) of t. At any leaf l ∈ Leaves(t), hl(y) ∈ [0, 1] for all y ∈ Y
and

∑
y∈Y hl(y) = 1. For convenience, we will denote by t(x) the leaf l ∈ Leaves(t) associated to

x by t. Thus, the score associated by (t,h) to a pair (x, y) ∈ X × Y is hl(y) where l = t(x).

Let Tn denote the family of all multi-class decision trees with n internal nodes in dimension d. In
Appendix J, we derive the following upper bound on the Rademacher complexity of Tn:

R(Π1(Tn)) ≤
√

(4n + 2) log2(d + 2) log(m + 1)
m

. (13)

All of the experiments in this section use Tn as the family of base hypothesis sets (parametrized by
n). Since Tn is a very large hypothesis set when n is large, for the sake of computational efficiency
we make a few approximations. First, although our MDeepBoost algorithms were derived in terms of
Rademacher complexity, we use the upper bound in Eq. (13) in place of the Rademacher complexity
(thus, in Algorithm 1 we let Λn = λBn + β, where Bn is the bound given in Eq. (13)). Secondly,
instead of exhaustively searching for the best decision tree in Tn for each possible size n, we use the
following greedy procedure: Given the best decision tree of size n (starting with n = 1), we find the
best decision tree of size n+1 that can be obtained by splitting one leaf, and continue this procedure
until some maximum depth K. Decision trees are commonly learned in this manner, and so in this
context our Rademacher-complexity-based bounds can be viewed as a novel stopping criterion for
decision tree learning. Let H∗

K be the set of trees found by the greedy algorithm just described.
In each iteration t of MDeepBoost, we select the best tree in the set H∗

K ∪ {h1, . . . , ht−1}, where
h1, . . . , ht−1 are the trees selected in previous iterations.

While we described many objective functions that can be used as the basis of a multi-class deep
boosting algorithm, the experiments in this section focus on algorithms derived from Fsum. We also
refer the reader to Table 3 in Appendix A for results of experiments with Fcompsum objective func-
tions. The Fsum and Fcompsum objectives combine several advantages that suggest they will perform
well empirically. Fsum is consistent and both Fsum and Fcompsum are (by Theorem 4) H-consistent.
Also, unlike Fmax both of these objectives are differentiable, and therefore the convergence guaran-
tee in Theorem 2 applies. Our preliminary findings also indicate that algorithms based on Fsum and
Fcompsum objectives perform better than those derived from Fmax and Fmaxsum. All of our objective
functions require a choice for Φ, the loss function. Since Cortes et al. [2014] reported comparable
results for exponential and logistic loss for the binary version of DeepBoost, we let Φ be the expo-
nential loss in all of our experiments with MDeepBoostSum. For MDeepBoostCompSum we select
Φ1(u) = log2(1 + u) and Φ2(−u) = exp(−u).

In our experiments, we used 8 UCI data sets: abalone, handwritten, letters, pageblocks,
pendigits, satimage, statlog and yeast – see more details on these datasets in Table 4, Ap-
pendix L. In Appendix K, we explain that when λ = β = 0 then MDeepBoostSum is equivalent to
AdaBoost.MR. Also, if we set λ = 0 and β 6= 0 then the resulting algorithm is an L1-norm regu-
larized variant of AdaBoost.MR. We compared MDeepBoostSum to these two algorithms, with the
results also reported in Table 1 and Table 2 in Appendix A. Likewise, we compared MDeepBoost-
CompSum with multinomial (additive) logistic regression, LogReg, and its L1-regularized version
LogReg-L1, which, as discussed in Appendix K, are equivalent to MDeepBoostCompSum when
λ = β = 0 and λ = 0, β ≥ 0 respectively. Finally, we remark that it can be argued that the parame-
ter optimization procedure (described below) significantly extends AdaBoost.MR since it effectively
implements structural risk minimization: for each tree depth, the empirical error is minimized and
we choose the depth to achieve the best generalization error.

All of these algorithms use maximum tree depth K as a parameter. L1-norm regularized versions
admit two parameters: K and β ≥ 0. Deep boosting algorithms have a third parameter, λ ≥ 0.
To set these parameters, we used the following parameter optimization procedure: we randomly
partitioned each dataset into 4 folds and, for each tuple (λ, β, K) in the set of possible parameters
(described below), we ran MDeepBoostSum, with a different assignment of folds to the training
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Table 1: Empirical results for MDeepBoostSum, Φ = exp. AB stands for AdaBoost.

abalone AB.MR AB.MR-L1 MDeepBoost handwritten AB.MR AB.MR-L1 MDeepBoost
Error 0.739 0.737 0.735 Error 0.024 0.025 0.021

(std dev) (0.0016) (0.0065) (0.0045) (std dev) (0.0011) (0.0018) (0.0015)

letters AB.MR AB.MR-L1 MDeepBoost pageblocks AB.MR AB.MR-L1 MDeepBoost
Error 0.065 0.059 0.058 Error 0.035 0.035 0.033

(std dev) (0.0018) (0.0059) (0.0039) (std dev) (0.0045) (0.0031) (0.0014)

pendigits AB.MR AB.MR-L1 MDeepBoost satimage AB.MR AB.MR-L1 MDeepBoost
Error 0.014 0.014 0.012 Error 0.112 0.117 0.117

(std dev) (0.0025) (0.0013) (0.0011) (std dev) (0.0123) (0.0096) (0.0087)

statlog AB.MR AB.MR-L1 MDeepBoost yeast AB.MR AB.MR-L1 MDeepBoost
Error 0.029 0.026 0.024 Error 0.415 0.410 0.407

(std dev) (0.0026) (0.0071) (0.0008) (std dev) (0.0353) (0.0324) (0.0282)

set, validation set and test set for each run. Specifically, for each run i ∈ {0, 1, 2, 3}, fold i was
used for testing, fold i + 1 (mod 4) was used for validation, and the remaining folds were used for
training. For each run, we selected the parameters that had the lowest error on the validation set and
then measured the error of those parameters on the test set. The average test error and the standard
deviation of the test error over all 4 runs is reported in Table 1. Note that an alternative procedure
to compare algorithms that is adopted in a number of previous studies of boosting [Li, 2009a,b, Sun
et al., 2012] is to simply record the average test error of the best parameter tuples over all runs.
While it is of course possible to overestimate the performance of a learning algorithm by optimizing
hyperparameters on the test set, this concern is less valid when the size of the test set is large relative
to the “complexity” of the hyperparameter space. We report results for this alternative procedure in
Table 2 and Table 3, Appendix A.

For each dataset, the set of possible values for λ and β was initialized to {10−5, 10−6, . . . , 10−10},
and to {1, 2, 3, 4, 5} for the maximum tree depth K. However, if we found an optimal parameter
value to be at the end point of these ranges, we extended the interval in that direction (by an order
of magnitude for λ and β, and by 1 for the maximum tree depth K) and re-ran the experiments.
We have also experimented with 200 and 500 iterations but we have observed that the errors do not
change significantly and the ranking of the algorithms remains the same.

The results of our experiments show that, for each dataset, deep boosting algorithms outperform the
other algorithms evaluated in our experiments. Let us point out that, even though not all of our re-
sults are statistically significant, MDeepBoostSum outperforms AdaBoost.MR and AdaBoost.MR-
L1 (and, hence, effectively structural risk minimization) on each dataset. More importantly, for each
dataset MDeepBoostSum outperforms other algorithms on most of the individual runs. Moreover,
results for some datasets presented here (namely pendigits) appear to be state-of-the-art. We also
refer our reader to experimental results summarized in Table 2 and Table 3 in Appendix A. These
results provide further evidence in favor of DeepBoost algorithms. The consistent performance im-
provement by MDeepBoostSum over AdaBoost.MR or its L1-norm regularized variant shows the
benefit of the new complexity-based regularization we introduced.

5 Conclusion

We presented new data-dependent learning guarantees for convex ensembles in the multi-class set-
ting where the base classifier set is composed of increasingly complex sub-families, including very
deep or complex ones. These learning bounds generalize to the multi-class setting the guarantees
presented by Cortes et al. [2014] in the binary case. We also introduced and discussed several new
multi-class ensemble algorithms benefiting from these guarantees and proved positive results for the
H-consistency and convergence of several of them. Finally, we reported the results of several ex-
periments with DeepBoost algorithms, and compared their performance with that of AdaBoost.MR
and additive multinomial Logistic Regression and their L1-regularized variants.
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