
Deep Boosting

A. Proof of Theorem 1
Theorem 1. Assume p > 1. Fix ! > 0. Then, for any
" > 0, with probability at least 1 � " over the choice of a
sample S of size m drawn i.i.d. according to D, the follow-
ing inequality holds for all f =

PT
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Thus, R(f )  bRS,⇢(f ) +

4
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Proof. For a fixed h = (h
1

, . . . , hT ), any ↵ 2 � de-
fines a distribution over {h

1

, . . . , hT }. Sampling from
{h

1

, . . . , hT } according to ↵ and averaging leads to func-
tions g of the form g =

1

n

PT
i=1

ntht for some n =

(n
1

, . . . , nT ), with
PT

t=1

nt = n, and ht 2 Hkt .

For any N = (N
1

, . . . , Np) with |N| = n, we consider the
family of functions
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�
,

and the union of all such families GF,n =

S
|N|=n GF,N.

Fix ! > 0. For a fixed N, the Rademacher complex-
ity of GF,N can be bounded as follows for any m � 1:
Rm(GF,N)  1

n

Pp
k=1

Nk Rm(Hk). Thus, the follow-
ing standard margin-based Rademacher complexity bound
holds (Koltchinskii & Panchenko, 2002). For any " > 0,
with probability at least 1� " , for all g 2 GF,N,

R⇢(g)� bRS,⇢(g)  2

!
1

n

pX

k=1

Nk Rm(Hk) +

s
log

1

�

2m
.

Since there are at most pn possible p-tuples N with |N| =

n, by the union bound, for any " > 0, with probability at
least 1� " , for all g 2 GF,n, we can write

R⇢(g)� bRS,⇢(g)  2
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Thus, with probability at least 1 � " , for all functions
g =

1

n

PT
i=1

ntht with ht 2 Hkt , the following inequality
holds
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Taking the expectation with respect to ↵ and using
E! [nt/n ] = #t, we obtain that for any " > 0, with proba-
bility at least 1� " , for all h, we can write
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Fix n � 1. Then, for any "n > 0, with probability at least
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Choose "n =

�
2pn�1 for some " > 0, then for p � 2,
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 " . Thus, for any " > 0 and any
n � 1, with probability at least 1 � " , the following holds
for all h:

E

!
[R⇢/2

(g)� bRS,⇢/2

(g)] 

4

!

TX

t=1

#tRm(Hkt) +

s
log

2p2n�1

�

2m
. (10)

Now, for any f =
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t=1

#tht 2 F and any
g =

1
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ntht, we can upper bound R(f ) =
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Thus, for any fixed f 2 F , we can write

R(f )� bRS,⇢(f )  2e�n⇢2/8
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Therefore, in view of (10), for any " > 0 and any n � 1,
with probability at least 1 � " , the following holds for all
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To select n, we seek to minimize
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where W�1

is the second branch of the Lambert function
(inverse of x 7! xex. It is not hard to verify that the fol-
lowing inequalities hold for all x 2 (0, 1/e ]:

� log(x)  �W�1

(�x)  2 log(x).
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Plugging in this value of n yields the following bound:
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which concludes the proof.
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Figure 5. Illustration of the directional derivatives in the three
cases of definition (11).

B. Coordinate descent
B.1. Maximum descent coordinate

For a differentiable convex function, the definition of co-
ordinate descent along the direction with maximal descent
is standard: the direction selected is the one maximizing
the absolute value of the directional derivative. Here, we
clarify the definition of the maximal descent strategy for a
non-differentiable convex function.

For any function Q : RN ! R, we denote by Q0
+

(↵, e)

the right directional derivative of Q at ↵ 2 RN and by
Q0
�(↵, e) its left directional derivative at ↵ 2 RN along

the direction e 2 RN , kek = 1, when they exist:

Q0
+

(↵, e) = lim

⌘!0

+

Q(↵ + $e)�Q(↵)

$

Q0
�(↵, e) = lim

⌘!0

�

Q(↵ + $e)�Q(↵)

$
.

For the remaining of this section, we will assume that Q is
a convex function. It is known that in that case these quan-
tities always exist and that Q0

�(↵, e)  Q0
+

(↵, e) for all
↵ and e. The left and right directional derivatives coincide
with the directional derivative Q0

(↵, e) of Q along the di-
rection e when Q is differentiable at ↵ along the direction
e: Q0

(↵, e) = Q0
+

(↵, e) = Q0
�(↵, e).

For any j 2 [1, N ], let ej denote the j th unit vector in RN .
For any ↵ 2 RN and j 2 [1, N ], we define the descent
gradient "Q(↵, ej) of Q along the direction ej as follows:

"Q(↵, ej) = (11)
8
><

>:

0 if Q0
�(↵, ej)  0  Q0

+

(↵, ej)

Q0
+

(↵, ej) if Q0
�(↵, ej)  Q0

+

(↵, ej)  0

Q0
�(↵, ej) if 0  Q0

�(↵, ej)  Q0
+

(↵, ej).

"Q(↵, ej) is the element of the subgradient along ej that
is the closest to 0. Figure 5 illustrates the three cases in that
definition. Note that when Q is differentiable along ej , then
Q0

+

(↵, ej) = Q0
�(↵, ej) and "Q(↵, ej) = Q0

(↵, ej).
The maximum descent coordinate can then be defined by

k = argmax

j2[1,N ]

|"Q(↵, ej)| (12)

This coincides with the standard definition when Q is con-
vex and differentiable.



Deep Boosting

B.2. Direction

In view of (12), at each iteration t � 1, the direction ek

selected by coordinate descent with maximum descent is
k = argmaxj2[1,N ]

|"Q(↵t�1

, ej)|. To determine k, we
compute "Q(↵t�1

, ej) for all j 2 [1, N ] by distinguishing
two cases: #t�1,j 6= 0 and #t�1,j = 0.

Assume first that #t�1,j 6= 0 and let s denote the sign of
#t�1,j . For $ sufficiently small, #t�1,j + $ has the sign of
#t�1,j , that is s and

F (↵t�1
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�

⇣
1� yif t�1

(xi)� $yihj(xi)

⌘

+

X

p6=j

⇤j |#t�1,p| + s⇤j(#t�1,j + $).

Thus, when #t�1,j 6= 0, F admits a directional derivative
along ej given by

F 0
(↵t�1

, ej)=� 1

m

mX

i=1

yihj(xi)�
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1�yif t�1

(xi)
�

+ s⇤j

=� 1

m
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i=1

yihj(xi)Dt(i )St + s⇤j

=(2%t,j � 1)

St

m
+ s⇤j ,

and "F (↵t�1

, ej) = (2%t,j�1)

St

m +sgn(#t�1,j)⇤j . When
#t�1,j = 0, we find similarly that

F 0
+

(↵t�1

, ej) = (2%t,j � 1)

St

m
+ ⇤j

F 0
�(↵t�1

, ej) = (2%t,j � 1)

St

m
� ⇤j .

The condition (F 0
�(↵, ej)  0  F 0

+

(↵, ej)) is equivalent
to
⇣
� ⇤j  (2%t,j � 1)

St

m
 ⇤j

⌘
,

����%t,j �
1

2

���� 
⇤jm
2St

.

Thus, in summary, we can write, for all j 2 [1, N ],

"F (↵t�1

, ej) =

8
>>><

>>>:

(2%t,j�1)

St

m +sgn(#t�1,j)⇤j if (#t�1,j 6= 0)

0 else if
��%t,j� 1

2

��  ⇤jm
2St

(2%t,j�1)

St

m +⇤j else if %t,j� 1

2

 �⇤jm
2St

(2%t,j�1)

St

m�⇤j otherwise.

This can be simplified by unifying the last two cases and
observing that the sign of (%t,j � 1

2

) suffices to distinguish
between the last two cases:

"F (↵t�1

, ej) =

8
><

>:

(2%t,j � 1)

St

m +sgn(#t�1,j)⇤j if (#t�1,j 6= 0)

0 else if
��%t,j� 1

2

��  ⇤jm
2St

(2%t,j � 1)

St

m�sgn(%t,j� 1

2

)⇤j otherwise.

B.3. Step

Given the direction ek, the optimal step value $ is given
by argmin⌘ F (↵t�1

+ $ek). In the most general case, $
can be found via a line search or other numerical meth-
ods. In some special cases, we can derive a closed-form
solution for the step by minimizing an upper bound on
F (↵t�1

+ $ek). For convenience, in what follows, we
use the shorthand %t for %t,k.

Since yihk(xi) =

1+yihk(xi)

2

· (1) +

1�yihk(xi)

2

· (�1), by
the convexity of u 7! �(1 � $u), the following holds for
all $ 2 R:

�

⇣
1� yif t�1

(xi)� $yihk(xi)

⌘
(13)

 1 + yihk(xi)

2

�

⇣
1� yif t�1

(xi))� $
⌘

+

1� yihk(xi)

2

�

⇣
1� yif t�1

(xi)) + $
⌘

.

Thus, we can write

F (↵t�1

+ $ek)�
X

j 6=k

⇤j |#t�1,j |

 1

m

mX

i=1

1 + yihk(xi)

2

�

⇣
1� yif t�1

(xi))� $
⌘

+

1

m

mX

i=1

1� yihk(xi)

2

�

⇣
1� yif t�1

(xi)) + $
⌘

+ ⇤k|#t�1,k + $|.

Let J ($) denote that upper bound. We can select $ to min-
imize J ($). J is convex and admits a subdifferential at all
points. Thus, $⇤ is a minimizer of J ($) iff 0 2 &J($⇤),
where &J($⇤) denotes the subdifferential of J at $⇤.

B.4. Exponential loss

In the case � = exp, J ($) can be expressed as follows

J ($) =

1

m

mX

i=1

1 + yihk(xi)

2

e1�yift�1(xi)e�⌘

+

1

m

mX

i=1

1� yihk(xi)

2

e1�yift�1(xi)e⌘

+ ⇤k|#t�1,k + $|,

and e1�yift�1(xi)
= �

0
(1� yif t�1

(xi)) = StDt(i ). Thus,
J can be rewritten as follows:2

J ($) = (1�%t)
St

m
e�⌘

+ %t
St

m
e⌘

+ ⇤k|#t�1,k + $|,

2Note that when the functions in H take values in {! 1, +1} ,
(13) is in fact an equality and J (! ) coincides with F (↵t! 1 +

! et) !
P

j"=k ⇤j |" t! 1,j |.
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e⌘⇤

P

X

e! ! t�1,k

P(e�↵t! 1,k
)

Figure 6. Plot of the polynomial function P .

where we used the shorthand %t = %t,k where k is the in-
dex of the direction ek selected. If #t�1,k + $⇤ = 0,
then the subdifferential of |#t�1,k + $| at $⇤ is the set
{' : ' 2 [�1, +1]}. Thus, &J($⇤) contains 0 iff there ex-
ists ' 2 [�1, +1] such that

� (1�%t)
St

m
e�⌘⇤

+ %t
St

m
e⌘⇤

+ ⇤k ' = 0

,� (1�%t)e↵t�1,k
+ %te�↵t�1,k

+

⇤km
St

' = 0.

This is equivalent to the condition
��
(1�%t)e↵t�1,k �%te�↵t�1,k

��  ⇤km
St

. (14)

If #t�1,k + $⇤ > 0, then the subdifferential of |#t�1,k + $|
at $⇤ is reduced to {1} and &J($⇤) contains 0 iff

� (1�%t)e�⌘⇤
+ %te⌘⇤

+

⇤km
St

= 0

,%te2⌘⇤
+

⇤km
St

e⌘⇤ � (1�%t) = 0. (15)

Solving the resulting second-degree equation in e⌘⇤ gives

e⌘⇤
= �⇤km

2%tSt
+

s✓
⇤km
2%tSt

◆
2

+

1�%t

%t
,

that is

$⇤ = log

2

4�⇤km
2%tSt

+

s✓
⇤km
2%tSt

◆
2

+

1�%t

%t

3

5 .

Let P be the second-degree polynomial of (15) whose so-
lution is e⌘⇤ . P is convex, has one negative solution, one
positive solution, and the positive solution is e⌘⇤ . Since
e�↵t�1,k is positive, the condition #t�1,k + $⇤ > 0 or
�#t�1,k < $ ⇤ is then equivalent to P(e�↵t�1,k

) < 0 (see
Figure 6), that is

%te�2↵t�1,k
+

⇤km
St

e�↵t�1,k � (1�%t) < 0

,(1�%t)e↵t�1,k �%te�↵t�1,k >
⇤km
St

. (16)

Note that $⇤  $0, where $0

= log

hq
1�✏t

✏t

i
is the step

size used is AdaBoost.

The case #t�1,k + $⇤ < 0 can be treated similarly. It is
equivalent to the condition

(1�%t)e↵t�1,k �%te�↵t�1,k < �⇤km
St

, (17)

and leads to the step size

$⇤ = log

2

4 ⇤km
2%tSt

+

s✓
⇤km
2%tSt

◆
2

+

1�%t

%t

3

5 .

B.5. Logistic loss

In the case of logistic loss, for any u 2 R, �(�u) =

log

2

(1 + e�u
) and �

0
(�u) =

1

log 2

1

(1+eu
)

. To determine
the step size, we use the following general upper bound:

�(�u � v)� �(�u) = log

2


1 + e�u�v

1 + e�u

�

= log

2


1 + e�u

+ e�u�v � e�u

1 + e�u

�

= log

2


1 +

e�v � 1

1 + eu

�

 e�v � 1

(log 2)(1 + eu
)

= �

0
(�u)(e�v � 1).

Thus, we can write

F (↵t�1

+ $et)� F (↵t�1

)

 1

m

mX

i=1

�

0
(1� yif t�1

(xi))(e�⌘yihk(xi) � 1)

+ ⇤k(|#t�1,k + $|� |#t�1,k|)

=

1

m

mX

i=1

Dt(i )St(e�⌘yihk(xi) � 1)

+ ⇤k(|#t�1,k + $|� |#t�1,k|).

To determine $, we can minimize this upper bound, or
equivalently the following

1

m

mX

i=1

Dt(i )St e�⌘yihk(xi)
+ ⇤k|#t�1,k + $|.

This expression is syntactically the same as the one con-
sidered in the case of the exponential loss with only the
distribution weights Dt(i ) and St being different. Indeed,
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in the case of the exponential loss (� = exp), we can write

F (↵t�1

+ $ek)�
X

j 6=k

⇤j |#t�1,j |

=

1

m

mX

i=1

�(1� yif t�1

(xi)�$yihk(xi))+⇤k|#t�1,k+$|,

=

1

m

mX

i=1

�(1� yif t�1

(xi)) e�⌘yihk(xi)
+⇤k|#t�1,k+$|,

=

1

m

mX

i=1

�

0
(1� yif t�1

(xi)) e�⌘yihk(xi)
+⇤k|#t�1,k+$|,

=

1

m

mX

i=1

D t(i )St e�⌘yihk(xi)
+⇤k|#t�1,k+$|.

Thus, we obtain immediately the same expressions for the
step size in the case of the logistic loss with the same three
cases, but with St =

Pm
i=1

1

1+eyift�1(xi)
and Dt(i ) =

1

St

1

1+eyift�1(xi)
.

C. Alternative DeepBoost! algorithm
We also devised and implemented an alternative algorithm,
DeepBoost� , which is inspired by the learning bound of
Theorem 1 but does not seek to minimize it. The algo-
rithm admits a parameter ( > 0 representing the edge value
demanded at each boosting round. This is the amount by
which we require the error %t of the base hypothesis ht se-
lected at round t to be better than 1

2

: %t � 1

2

> ( . We
assume given p distinct hypothesis sets with increasing de-
grees of complexity H

1

, . . . , Hp. DeepBoost� proceeds as
if we were running AdaBoost using only as base hypothe-
sis set H

1

. But, at each round, if the edge achieved by the
best hypothesis found in H

1

is not sufficient, that is if it is
not larger than the demanded edge ( , then it selects instead
the hypothesis in H

2

with the smallest error on the sample
weighted by D t. If the edge of that hypothesis is also not
sufficient, it proceeds with the next hypothesis set and so
forth. If the edge is insufficient even with the best hypoth-
esis in Hp, then it just uses the best hypothesis found in
H =

Sp
k=1

Hk. The edge parameter ( is determined via
cross-validation.

DeepBoost� is inspired by the bound of Theorem 1 since
it seeks to use as much as possible hypotheses from H

1

or
lower complexity families and only when necessary func-
tions from more complex families. Since it tends to choose
rarely hypotheses from more complex Hks, the complexity
term of the bound of Theorem 1 remains close to the one
using only H

1

. On the other hand, DeepBoost� can achieve
a smaller empirical margin loss (first term of the bound)
by selecting, when needed, more powerful hypotheses than
those accessible using H

1

alone.

We carried out some early experiments on several datasets

Table 4. Dataset statistics. german refers more specifically to the
german (numeric) dataset.

breastcancer ionosphere german

Examples 699 351 1000
Attributes 9 34 24

diabetes ocr17 ocr49

Examples 768 2000 2000
Attributes 8 196 196

ocr17-mnist ocr49-mnist

Examples 15170 13782
Attributes 400 400

with DeepBoost� using boosting stumps, in which the per-
formance of the algorithm was found to be superior to that
of AdaBoost. A more extensive study of the theoretical and
empirical properties of this algorithm are left to the future.

D. Additional empirical information
D.1. Dataset sizes and attributes

The size and the number of attributes for the datasets used
in our experiments are indicated in Table 4.
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