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Abstract

Motivated by real-time advertising exchanges, we analyze the problem of pricing
inventory in a repeated posted-price auction. We consider both the cases of a truth-
ful and surplus-maximizing buyer, where the former makes decisions myopically
on every round, and the latter may strategically react to our algorithm, forgoing
short-term surplus in order to trick the algorithm into setting better prices in the
future. We further assume a buyer’s valuation of a good is a function of a context
vector that describes the good being sold. We give the first algorithm attaining
sublinear ( eO(T 2/3

)) regret in the contextual setting against a surplus-maximizing
buyer. We also extend this result to repeated second-price auctions with multiple
buyers.

1 Introduction

A growing fraction of Internet advertising is sold through automated real-time ad exchanges. In
a real-time ad exchange, after a visitor arrives on a webpage, information about that visitor and
webpage, called the context, is sent to several advertisers. The advertisers then compete in an auction
to win the impression, or the right to deliver an ad to that visitor. One of the great advantages of
online advertising compared to advertising in traditional media is the presence of rich contextual
information about the impression. Advertisers can be particular about whom they spend money
on, and are willing to pay a premium when the right impression comes along, a process known
as targeting. Specifically, advertisers can use context to specify which auctions they would like to
participate in, as well as how much they would like to bid. These auctions are most often second-
price auctions, wherein the winner is charged either the second highest bid or a prespecified reserve
price (whichever is larger), and no sale occurs if the reserve price isn’t cleared by one of the bids.

One side-effect of targeting, which has been studied only recently, is the tendency for such exchanges
to generate many auctions that are rather uncompetitive or thin, in which few advertisers are willing
to participate. Again, this stems from the ability of advertisers to examine information about the
impression before deciding to participate. While this selectivity is clearly beneficial for advertisers,
it comes at a cost to webpage publishers. Many auctions in real-time ad exchanges ultimately involve
just a single bidder, in which case the publisher’s revenue is entirely determined by the selection of
reserve price. Although a lone advertiser may have a high valuation for the impression, a low reserve
price will fail to extract this as revenue for the seller if the advertiser is the only participant in the
auction.

As observed by [2], if a single buyer is repeatedly interacting with a seller, selecting revenue-
maximizing reserve prices (for the seller) reduces to revenue-maximization in a repeated posted-
price setting: On each round, the seller offers a good to the buyer at a price. The buyer observes her
value for the good, and then either accepts or rejects the offer. The seller’s price-setting algorithm is
known to the buyer, and the buyer behaves to maximize her (time-discounted) cumulative surplus,
i.e., the total difference between the buyer’s value and the price on rounds where she accepts the
offer. The goal of the seller is to extract nearly as much revenue from the buyer as would have been
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possible if the process generating the buyer’s valuations for the goods had been known to the seller
before the start of the game. In [2] this goal is called minimizing strategic regret.

Online learning algorithms are typically designed to minimize regret in hindsight, which is defined
as the difference between the loss of the best action and the loss of the algorithm given the observed
sequence of events. Furthermore, it is assumed that the observed sequence of events are generated
adversarially. However, in our setting, the buyer behaves self-interestedly, which is not necessarily
the same as behaving adversarially, because the interaction between the buyer and seller is not
zero-sum. A seller algorithm designed to minimize regret against an adversary can perform very
suboptimally. Consider an example from [2]: a buyer who has a large valuation v for every good.
If the seller announces an algorithm that minimizes (standard) regret, then the buyer should respond
by only accepting prices below some ✏ ⌧ v. In hindsight, posting a price of ✏ in every round would
appear to generate the most revenue for the seller given the observed sequence of buyer actions,
and therefore ✏T cumulative revenue is “no-regret”. However, the seller was tricked by the strategic
buyer; there was (v � ✏)T revenue left on the table. Moreoever, this is a good strategy for the buyer
(it must have won the good for nearly nothing on ⌦(T ) rounds).

The main contribution of this paper is extending the setting described above to one where the buyer’s
valuations in each round are a function of some context observed by both the buyer and seller.
While [2] is motivated by our same application, they imagine an overly simplistic model wherein
the buyer’s value is generated by drawing an independent v

t

from an unknown distribution D. This
ignores that v

t

will in reality be a function of contextual information x

t

, information that is available
to the seller, and the entire reason auctions are thin to begin with (without x

t

there would be no
targeting). We give the first algorithm that attains sublinear regret in the contextual setting, against a
surplus-maximizing buyer. We also note that in the non-contextual setting, regret is measured against
the revenue that could have been made if D were known, and the single fixed optimal price were
selected. Our comparator will be more challenging as we wish to compete with the best function (in
some class) from contexts x

t

to prices.

The rest of the paper is organized as follows. We first introduce a linear model by which values v
t

are
derived from contexts x

t

. We then demonstrate an algorithm based on stochastic gradient descent
(SGD) which achieves sublinear regret against an truthful buyer (one that accepts price p

t

iff p
t

 v
t

on every round t). The analysis for the truthful buyer uses prexisting high probability bounds for
SGD when minimizing strongly convex functions [22]. Our main result requires an extension of
this analysis to cases in which “incorrect” gradients are occasionally observed. This lets us study
a buyer that is allowed to best-respond to our algorithm, possibly rejecting offers that the truthful
buyer would not, in order to receive better offers on future rounds. We also adapt our algorithm
to non-linear settings via a kernelized version of the algorithm. Finally, we extend our results to
second-price auctions with multiple buyers.

Related Work: The pricing of digital good in repeated auctions has been considered by many other
authors, including [2, 17, 4, 3, 6, 19]. However, most of these papers do not consider a buyer who
behaves strategically across rounds. Buyers either behave randomly [19], or only participate in a
single round [17, 4, 3, 6], or participate in multiple rounds but only desire a single good [20, 12]
and therefore, in each of these cases, are not incentivized to manipulate the seller’s behavior on
future rounds. In reality buyers repeatedly interact with the same seller. There is empirical evidence
suggesting that buyers are not myopic, and do in fact behave strategically to induce better prices in
the future [9], as well as literature studying different strategies for strategic buyers [5, 15, 16].

Repeated posted price actions against the same strategic buyer have been considered in the eco-
nomics literature under the heading of behavior-based price discrimination (BBPD) by [13, 23, 1,
11], and more recently by [8]. These works differ from ours in two key ways. First, all these works
imagine that the buyer’s type is drawn from some fixed publicly available distribution. Therefore
learning D is not at issue. In contrast, we argue that access to an accurate prior is particularly prob-
lematic in these settings. After all, the seller cannot expect to reliably estimate D from data when
the buyer is explicitly incentivized to hide its type (as illustrated in the Introduction; see also [2]).
This tension between learning and buyer truthfulness is in many ways central to our study.

Secondly, given a fixed prior, the most common solution concept in the BBPD literature is a perfect
Bayes-Nash equilibrium, in which both the seller and buyer strategies are best responses to each
other. However, in the context of Internet advertising, a seller must first deploy an algorithm which
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automates the pricing strategy, and buyers subsequently react to the observed behavior of the pric-
ing algorithm. Any modifications the seller wishes to make to the pricing algorithm will typically
require changes to the end-user licensing agreement, which the seller will not want to do too fre-
quently. Therefore, in this paper, we make a commitment assumption on the seller: the seller acts
first, announcing its pricing strategy, after which the buyer plays a best response strategy. Such
Stackleberg models of commitment [10] have sparked a great deal of recent interest due to their suc-
cess in security games (see [7] and [18] for an overview), including practical deployment [21, 14].

2 Preliminaries

Throughout this work, we will consider a repeated auction where at every round a single seller
prices an item to sell to a single buyer (extensions to multiple buyers are discussed in Section 5).
The good sold at step t in the repeated auction is represented by a context (feature) vector x

t

2 X =

{x : kxk
2

 1} and is drawn according a fixed distribution D, which is unknown to the seller. The
good has a value v

t

that is a linear function of a parameter vector w⇤, also unknown to the seller,
v
t

= w

⇤>
x

t

(extensions to non-linear functions of the context are considered in Section 5). We
assume that w⇤ 2 W = {w : kwk

2

 1} and also that 0  w

⇤>
x  1 with probability one with

respect to D.

For rounds t = 1, . . . , T the repeated posted-price auction is defined as follows: (1) The buyer and
seller both observe x

t

⇠ D. (2) The seller offers a price p
t

. (3) The buyer selects a
t

2 {0, 1}. (4)
The seller receives revenue a

t

p
t

.

Here, a
t

is an indicator variable that represents whether or not the buyer accepted the offered price
(1 indicates yes). The goal of the seller is to select a price p

t

in each round t such that the expected
regret R(T ) = E

h

P

T

t=1

v
t

� a
t

p
t

i

is o(T ). The choice of a
t

will depend on the buyer’s behavior.
We will analyze two types of buyers in the subsequent sections of the paper: truthful and surplus-
maximizing buyers, and will attempt to minimize regret against the truthful buyer and regret against
the surplus-maximizing buyer. Note, the regret is the difference between the maximum revenue
possible and the amount made by the algorithm that offers prices to the buyer.

3 Truthful Buyer

In this section we introduce the Learn-Exploit Algorithm for Pricing (LEAP), which we show has
regret of the form O(T 2/3

p

log(T )) against a truthful buyer. A buyer is truthful if she accepts
any offered price that gives a non-negative surplus, which is defined as the difference between the
buyer’s value for the good minus the price paid: v

t

� p
t

. Therefore, for a truthful buyer we define
a
t

= 1{p
t

 v
t

}.

At this point, we note that the loss function v
t

� 1{p
t

 v
t

}p
t

, which we wish to minimize over
all rounds, is not convex, differentiable or even continuous. If the price is even slightly above the
truthful buyers valuation it is rejected and the seller makes zero revenue. To circumvent this our
algorithm will attempt to learn w

⇤ directly by minimizing a surrogate loss function for which w

⇤

in the minimizer. Our analysis hinges on recent results [22] which give optimal rates for gradient
descent when the function being minimized is strongly convex. Our key trick is to offer prices so
that, in each round, the buyer’s behavior reveals the gradient of the surrogate loss at our current
estimate for w⇤. Below we define the LEAP algorithm (Algorithm 1), which we show addresses
these difficulties in the online setting.
The algorithm depends on input parameters ↵, ✏ and �. The ↵ parameter determines what fraction
of rounds are spent in the learning phase as oppose to the exploit phase. During the learning phase,
uniform random prices are offered and the model parameters are updated as a function of the feed-
back given by the buyer. During the exploit phase, the model parameters are fixed and the offered
price is computed as a linear function of these parameters minus the value of the ✏ parameter. The
✏ parameter can be thought of as inversely proportional to our confidence in the fixed model pa-
rameters and is used to hedge against the possibility of over-estimating the value of a good. The �
parameter is a learning-rate parameter set according to the minimum eigenvalue of the covariance
matrix, and is defined below in Assumption 1. In order to prove a regret bound, we first show that
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Algorithm 1 LEAP algorithm
• Let 0  ↵  1, w1 = 0 2 W , ✏ � 0, � > 0, T↵ = d↵T e.
• For t = 1, . . . , T↵ (Learning phase)

– Offer pt ⇠ U , where U is the uniform distribution on the interval [0, 1].
– Observe at.
– g̃t = 2

�
wt · xt � at

�
xt.

– wt+1 = ⇧W(wt � 1
�t g̃t).

• For t = T↵ + 1, . . . , T (Exploit phase)
– Offer pt = wT↵+1 · xt � ✏.

the learning phase of the algorithm is minimizing a strongly convex surrogate loss and then show
that this implies the buyer enjoys near optimal revenue during the exploit phase of the algorithm.

Let g
t

= 2(w

>
t

x

t

� 1{p
t

 v
t

})x
t

and F (w) = E

x⇠D
⇥

(w

⇤>
x � w

>
x)

2

⇤

. Note that when the
buyer is truthful g̃

t

= g

t

. Against a truthful buyer, g
t

is an unbiased estimate of the gradient of F .
Proposition 1. The random variable g

t

satisfies E[g

t

| w
t

] = rF (w

t

). Also, kg
t

k  4 with
probability 1.

Proof. First note that E[g
t

|w
t

] = E

xt

⇥

2

�

w

t

·x
t

�E

pt [1{pt  v
t

}]
�⇤

= E

xt

⇥

2

�

w

t

·x
t

�Pr

pt(pt 
v
t

)

�⇤

. Since p
t

is drawn uniformly from [0, 1] and v
t

is guaranteed to lie in [0, 1] we have that
Pr(p

t

 v
t

) =

R

1

0

1{p
t

 v
t

}dp
t

= v
t

. Plugging this back into g

t

gives us exactly the expression
for rF (w

t

). Furthermore, kg
t

k = 2|w>
t

x

t

� 1{p
t

 v
t

}| kx
t

k  4 since |w>
t

x

t

|  kw
t

kkx
t

k 
1 and kx

t

k  1

We now introduce the notion of strong convexity. A twice-differentiable function H(w) is �-
strongly convex if and only if the Hessian matrix r2H(w) is full rank and the minimum eigenvalue
of r2H(w) is at least �. Note that the function F is strongly convex if and only if the covariance
matrix of the data is full-rank, since r2F (w) = 2E

x

[xx

>
]. We make the following assumption.

Assumption 1. The minimum eigenvalue of 2E
x

[xx

>
] is at least � > 0.

Note that if this is not the case then there is redundancy in the features and the data can be pro-
jected (for example using PCA) into a lower dimensional feature space with a full-rank covariance
matrix and without any loss in information. The seller can compute an offline estimate of both this
projection and � by collecting a dataset of context vectors before starting to offer prices to the buyer.

Thus, in view of Proposition 1 and the strong convexity assumption, we see the learning phase of
the LEAP algorithm is conducting a stochastic gradient descent to minimize the �-strongly convex
function F , where at each time step we update w

t+1

= ⇧W(w

t

� 1

�t

g̃

t

) and g̃

t

= g

t

is an unbiased
estimate of the gradient. We now make use of an existing bound ([22]) for stochastic gradient
descent on strongly convex functions.
Lemma 1 ([22] Proposition 1). Let � 2 (0, 1/e), T

↵

� 4 and suppose F is �-strongly convex over
the convex set W . Also suppose E[g

t

| w
t

] = rF (w) and kg
t

k2  G2 with probability 1. Then
with probability at least 1� � for any t  T

↵

it holds that

kw
t

�w

⇤k2  (624 log(log(T
↵

)/�) + 1)G2

�2t
where w

⇤
= argmin

w

F (w) .

This guarantees that, with high probability, the distance between the learned parameter vector w
t

and the target weight vector w⇤ is bounded and decreasing as t increases. This allows us to carefully
tune the ✏ parameter that is used in the exploit phase of the algorithm (see Lemma 6 in the appendix).
We are now equipped to prove a bound on the regret of the LEAP algorithm.
Theorem 1. For any T > 4, 0 < ↵ < 1 and assuming a truthful buyer, the LEAP algorithm

with ✏ =

q

(624 log(

p
T↵ log(T↵))+1)G

2

�

2
T↵

, where G = 4, has regret against a truthful buyer at most
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R(T )  2↵T + 4

q

T

↵

q

(624 log(

p
T↵ log(T↵))+1)G

2

�

2 , which implies for ↵ = T�1/3 a regret at most

R(T )  2T 2/3

+ 4T 2/3

r

(624 log(T 1/3

log(T 2/3

)) + 1)G2

�2

= O
⇣

T 2/3

p

log(T )
⌘

.

Proof. We first decompose the regret

E

h

T

X

t=1

v
t

� a
t

p
t

i

= E

h

T↵
X

t=1

v
t

� a
t

p
t

i

+E

h

T

X

t=T↵+1

v
t

� a
t

p
t

i

 T
↵

+

T

X

t=T↵+1

E

h

v
t

� a
t

p
t

i

, (1)

where we have used the fact |v
t

�a
t

p
t

|  1. Let A denote the event that, for all t 2 {T
↵

+1, . . . , T},
a
t

= 1^v
t

�p
t

 ✏. Lemma 6 (see Appendix, Section A.1) proves that A occurs with probability at
least 1�T�1/2

↵

. For brevity let N =

p

(624 log(

p
T
↵

log(T
↵

)) + 1)G2/�2, then we can decompose
the expectation in the following way:

E

h

v
t

� a
t

p
t

i

= Pr[A]E[v
t

� a
t

p
t

|A] + (1� Pr[A])E[v
t

� a
t

p
t

|¬A]

 Pr[A]✏+ (1� Pr[A])  ✏+ T�1/2

↵

=

r

N

T
↵

+

r

1

T
↵

 2

r

N

T
↵

,

where the inequalities follow from the definition of A, Lemma 6, and the fact that |v
t

� a
t

p
t

| < 1.
Plugging this back into equation (1) gives T

↵

+

P

T

t=T↵+1

E[v
t

� a
t

p
t

]  T
↵

+

d(1�↵)Tep
T↵

2

p
N 

2↵T +4

q

T

↵

p
N , proving the first result of the theorem. ↵ = T�1/3 gives the final expression.

In the next section we consider the more challenging setting of a surplus-maximizing buyer, who
may accept/reject prices in a manner meant to lower the prices offered.

4 Surplus-Maximizing Buyer

In the previous section we considered a truthful buyer who myopically accepts every price below
her value, i.e., she sets a

t

= 1{p
t

 v
t

} for every round t. Let S(T ) = E
h

P

T

t=1

�
t

a
t

(v
t

� p
t

)

i

be the buyer’s cumulative discounted surplus, where {�
t

} is a decreasing discount sequence, with
�
t

2 (0, 1). When prices are offered by the LEAP algorithm, the buyer’s decisions about which
prices to accept during the learning phase have an influence on the prices that she is offered in the
exploit phase, and so a surplus-maximizing buyer may be able to increase her cumulative discounted
surplus by occasionally behaving untruthfully. In this section we assume that the buyer knows the
pricing algorithm and seeks to maximize S(T ).
Assumption 2. The buyer is surplus-maximizing, i.e., she behaves so as to maximize S(T ), given
the seller’s pricing algorithm.

We say that a lie occurs in any round t where a
t

6= 1{p
t

 v
t

}. Note that a surplus-maximizing
buyer has no reason to lie during the exploit phase, since the buyer’s behavior during exploit rounds
has no effect on the prices offered. Let L = {t : 1  t  T

↵

^ a
t

6= 1{p
t

 v
t

}} be the set of
learning rounds where the buyer lies, and let L = |L| be the number of lies. Observe that g̃

t

6= g

t

in any lie round (recall that E[g
t

| w
t

] = rF (w

t

), i.e., g
t

is the stochastic gradient in round t).

We take a moment to note the necessity of the discount factor �
t

. This essentially models the buyer
as valuing surplus at the current time step more than in the future. Another way of interpreting this,
is that the seller is more “patient” as compared to the buyer. In [2] the authors show a lower bound
on the regret against a surplus-maximizing buyer in the contextless setting of the form O(T

�

), where
T
�

=

P

T

i=1

�
t

. Thus, if no decreasing discount factor is used, i.e. �
t

= 1, then sublinear regret is
not possible. Note, the lower bound of the contextless setting applies here as well, since the case of
a distribution D that induces a fixed context x⇤ on every round is a special case of our setting. In
that case the problem reduces to the fixed unknown value setting since on every round v

t

= w

⇤>
x

⇤.

In the rest of this section we prove an O
�

T 2/3

p

log(T )(1 + 1/ log(1/�))
�

bound on the seller’s
regret under the assumption that the buyer is surplus-maximizing and that her discount sequence is
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�
t

= �t�1 for some � 2 (0, 1). The idea of the proof is to show that the buyer incurs a cost for
telling lies, and therefore will not tell very many, and thus the lies she does tell will not significantly
affect the seller’s estimate of w⇤.

Bounding the cost of lies: Observe that in any learning round where the surplus-maximizing buyer
tells a lie, she loses surplus in that round relative to the truthful buyer, either by accepting a price
higher than her value (when a

t

= 1 and v
t

< p
t

) or by rejecting a price less than her value (when
a
t

= 0 and v
t

> p
t

). This observation can be used to show that lies result in a substantial loss of
surplus relative to the truthful buyer, provided that in most of the lie rounds there is a nontrivial gap
between the buyer’s value and the seller’s price. Because prices are chosen uniformly at random
during the learning phase, this is in fact quite likely, and with high probability the surplus lost
relative to the truthful buyer during the learning phase grows exponentially with the number of lies.
The precise quantity is stated in the Lemma below. A full proof appears in the appendix, Section A.3.
Lemma 2. Let the discount sequence be defined as �

t

= �t�1 for 0 < � < 1 and assume the buyer
has told L lies. Then for � > 0 with probability at least 1 � � the buyer loses a surplus of at least
�

�L+3�1

8T↵ log(

1
� )

⇣

�

T↵

1��

⌘

relative to the truthful buyer during the learning phase.

Bounding the number of lies: Although we argued in the previous lemma that lies during the
learning phase cause the surplus-maximizing buyer to lose surplus relative to the truthful buyer,
those lies may result in lower prices offered during the exploit phase, and thus the overall effect of
lying may be beneficial to the buyer. However, we show that there is a limit on how large that benefit
can be, and thus we have the following high-probability bound on the number of learning phase lies.
Lemma 3. Let the discount sequence be defined as �

t

= �t�1 for 0 < � < 1. Then for � > 0 with
probability at least 1� �, the number of lies L  log(32T↵

1
� log(

2
� )+1)

log(1/�)

.

The full proof is found in the appendix (Section A.4), and we provide a proof sketch here. The
argument proceeds by comparing the amount of surplus lost (compared to the truthful buyer) due to
telling lies in the learning phase to the amount of surplus that could hope to be gained (compared to
the truthful buyer) in the exploit phase. Due to the discount factor, the surplus lost will eventually
outweigh the surplus gained as the number of lies increases, implying a limit to the number of lies a
surplus maximizing buyer can tell.

Bounding the effect of lies: In Section 3 we argued that if the buyer is truthful then, in each
learning round t of the LEAP algorithm, g̃

t

is a stochastic gradient with expected value rF (w

t

).
We then use the analysis of stochastic gradient descent in [22] to prove that w

T↵+1

converges to w

⇤

(Lemma 1). However, if the buyer can lie then g̃

t

is not necessarily the gradient and Lemma 1 no
longer applies. Below we extend the analysis in Rakhlin et al. [22] to a setting where the gradient
may be corrupted by lies up to L times.
Lemma 4. Let � 2 (0, 1/e), T

↵

� 2. If the buyer tells L lies then with probability at least 1 � �,

kw
T↵+1

�w

⇤k2  1

T↵+1

⇣

(624 log(log(T↵)/�)+e

2
)G

2

�

2 +

4e

2
L

�

⌘

.

The proof of the lemma is similar to that of Lemma 1, but with extra steps needed to bound the
additional error introduced due to the erroneous gradients. Due to space constraints, we present
the proof in the appendix, Section A.6. Note that, modulo constants, the bound only differs by the
additive term L/T

↵

. That is, there is an extra additive error term that depends on the ratio of lies to
number of learning rounds. Thus, if no lies are told, then there is no additive error. While if many
lies are told, e.g. L = T

↵

, then the bound become vacuous.

Main result: We are now ready to prove an upper bound on the regret of the LEAP algorithm when
the buyer is surplus-maximizing.
Theorem 2. For any 0 < ↵ < 1 (such that T

↵

� 4), 0 < � < 1 and assuming a surplus-maximizing
buyer with exponential discounting factor �

t

= �t�1, then the LEAP algorithm using parame-

ter ✏ =
q

1

T↵

�

(624 log(2

p
T↵ log(T↵))+e

2
)G

2

�

2 +

4e

2
log(128

p
T↵ log(4

p
T↵)+1)

� log(1/�)

�

, where G = 4, has regret
against a surplus-maximizing buyer at most

R(T )  2↵T + 4

r

T

↵

s

(624 log(2

p
T
↵

log(T
↵

)) + e2)G2

�2

+

4e2 log(128
p
T
↵

log(4

p
T
↵

) + 1)

� log(1/�)
,
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which for ↵ = T�1/3 implies R(T )  O
⇣

T 2/3

q

log(T )
�

1 +

1

log(1/�)

�

⌘

.

Proof. Taking the high probability statements of Lemma 3 and Lemma 4 with �/2 2 [0, 1/e]

tells us that with probability at least 1 � �, kw
T↵ �w

⇤k2  1

T↵

⇣

(624 log(2 log(T↵)/�)+e

2
)G

2

�

2 +

4e

2
log(64T↵

1
� log(

4
� )+1)

� log(1/�)

⌘

.

Since we assume T
↵

� 4, if we set � = T�1/2

↵

it implies �/2 = T�1/2

↵

/2  1/e, which is required
for Lemma 4 to hold. Thus, if we set the algorithm parameter ✏ as indicated in the statement of
theorem, we have that with probability at least 1 � T�1/2

↵

for all t 2 {T
↵

+ 1, . . . , T} that a
t

= 1

and v
t

� p
t

 ✏, which follows from the same argument used for Lemma 6.

Finally, the same steps as in the proof of Theorem 1 we can be used to show the first inequality.
Setting ↵ = T�1/3 shows the second inequality and completes the theorem.

Note that the bound shows that if � ! 1 (i.e. no discounting) the bound becomes vacuous, which
is to be expected since the ⌦(T

�

) lower bound on regret demonstrates the necessity of a discounting
factor. If � ! 0 (i.e. buyer become myopic, thereby truthful), then we retrieve the truthful bound
modulo constants. Thus for any � < 1, we have shown the first sublinear bound on the seller’s regret
against a surplus-maximizing buyer in the contextual setting.

5 Extensions

Doubling trick: A drawback of Theorem 2 is that optimally tuning the parameters ✏ and ↵ re-
quires knowledge of the horizon T . The usual way of handling this problem in the standard online
learning setting is to apply the ‘doubling trick’: If a learning algorithm that requires knowledge
of T has regret O(T c

) for some constant c, then running independent instances of the algorithm
during consecutive phases of exponentially increasing length (i.e., the ith phase has length 2

i) will
also have regret O(T c

). We can also apply the doubling trick to our strategic setting, but we must
exercise caution and argue that running the algorithm in phases does not affect the behavior of a
surplus-maximizing buyer in a way that invalidates the proof of Theorem 2. We formally state and
prove the relevant corollary in Section A.8 of the Appendix.

Kernelized Algorithm: In some cases, assuming that the value of a buyer is a linear function of
the context may not be accurate. In Section A.7 of the Appendix we describe a kernelized version
of LEAP, which allows for a non-linear model of the buyer value as a function of the context x. At
the same time, the regret guarantees provided in the previous sections still apply since we can view
the model as linear function of the induced features �(x), where �(·) is a non-linear map and the
kernel function K is used to compute the inner product in this induced feature space: K(x, x0

) =

�(x)>�(x0
).

Multiple Buyers: So far we have assumed that the seller is interacting with a single buyer across
multiple posted price auctions. Recall that the motivation for considering this setting was repeated
second price auctions against a single buyer, a situation that happens often in online advertising
because of targetting. One might nevertheless wonder whether the algorithm can be applied to a
setting where there can be multiple buyers, and whether it remains robust in such a setting. We
describe a way in which the analysis for the posted-price setting can carry over to multiple buyers.

Formally, suppose there are K buyers, and on round t, buyer k receives a valuation of v
k,t

. We let
kval(t) = argmax

k

v
k,t

, v+
t

= v
k

val
(t),t

, and v�
t

= max

k 6=k

val
(t)

v
k,t

: the buyer with the highest
valuation, the highest valuation itself, and the second-highest valuation respectively. In a second
price auction, each buyer also submits a bid b

k,t

, and we define kbid(t), b+
t

and b�
t

analogously
to kval(t), v+

t

, v�
t

, corresponding to the highest bidder, the largest bid, and the second-largest bid.
After the seller announces a reserve price p

t

, buyers submit their bids {b
k,t

}, and the seller receives
round t revenue of r

t

= 1{p
t

 b+
t

}max{b�
t

, p
t

}. The goal of the seller is to minimize R(T ) =

E[

P

T

t=1

v+
t

� r
t

]. We assume that buyers are surplus-maximizing, and select a strategy that maps
previous reserve prices p

1

, ..., p
t�1

, p
t

, and v
k,t

to a choice of bid on round t.
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We call v+
t

the market valuation for good t. The key to extending the LEAP algorithm to the multiple
buyer setting will be to treat market valuations in the same way we treated the individual buyer’s
valuation in the single-buyer setting. In order to do so, we make an analogous modelling assumption
to that of Section 2. Specifically, we assume that there is some w

⇤ such that v+
t

= w

⇤>
t

x

t

.1 Note
that we assume a model on the market price itself.

At first glance, this might seem like a strange assumption since v+
t

is itself the result of a maxi-
mization over v

k,t

. However, we argue that it’s actually rather unrestrictive. In fact the individual
valuations v

k,t

can be generated arbitrarily so long as v
k,t

 w

⇤>
t

x

t

and equality holds for some k.
In other words, we can imagine that nature first computes the market valuation v+

t

, then arbitrarily
(even adversarialy) selects which buyer gets this valuation, and the other buyer valuations.

Now we can define a
t

= 1{p
t

 b+
t

}, whether the largest bid was greater than the reserve, and
consider running the LEAP algorithm, but with this choice of a

t

. Notice that for any t, a
t

p
t

 r
t

,
thereby giving us the following key fact: R(T )  R0

(T ) , E[

P

T

t=1

v+
t

� a
t

p
t

]. We also redefine
L to be the number of market lies: rounds t  T

↵

where a
t

6= 1{p
t

 v+
t

}. Note the market tells
a lie if either all valuations were below p

t

, but somebody bid over p
t

anyway, or if some valuation
was above p

t

but no buyer decided to outbid p
t

. With this choice of L, Lemma 4 holds exactly as
written but in the multiple buyer setting.

It’s well-known [24] that single-shot second price auctions are strategy-proof. Therefore, during the
exploit phase of the algorithm, all buyers are incentivized to bid truthfully. Thus, in order to bound
R0

(T ) and therefore R(T ), we need only rederive Lemma 3 to bound the number of market lies. We
begin partitioning the market lies. Let L = {t : t  T

↵

,1{p
t

 v+
t

} 6= 1{p
t

 b+
t

}}, while letting
L
k

= {t : t  T
↵

, v+
t

< p+
t

 b+
t

, kbid(t) = k} [ {t  T
↵

, b+
t

< p
t

 v+
t

, kval(t) = k}. In other
words, we attribute a lie to buyer k if (1) the reserve was larger than the market value, but buyer k
won the auction anyway, or (2) buyer k had the largest valuation, but nobody cleared the reserve.
Checking that L = [

k

L
k

and letting L
k

= |L
k

| tells us that L 
P

K

k=1

L
k

. Furthermore, we
can bound L

k

using nearly identical arguments to the posted price setting, giving us the subsequent
Corollary for the multiple buyer setting.
Lemma 5. Let the discount sequence be defined as �

t

= �t�1 for 0 < � < 1. Then for � > 0 with
probability at least 1� �, L

k

 log(32T↵/�+1)

log(1/�)

, and L  KL
k

.

Proof. We first consider the surplus buyer k loses during learning rounds, compared to if he had
been truthful. Suppose buyer k unilateraly switches to always bidding his value (i.e. b

k,t

= v
k,t

).
For a single-shot second price auction, being truthful is a dominant strategy and so he would only
increase his surplus on learning rounds. Furthermore, on each round in L

k

he would increase his
(undiscounted) surplus by at least |v

k,t

� p
t

|. Now the analysis follows as in Lemmas 2 and 3.

Corollary 1. In the multiple surplus-maximizing buyers setting the LEAP algorithm with

↵ = T�1/3, ✏ =

q

1

T↵

�

(624 log(2

p
T↵ log(T↵))+e

2
)G

2

�

2 +

4e

2
K log(128

p
T↵ log(4

p
T↵)+1)

� log(1/�)

�

, has regret

R(T )  R0
(T )  O

⇣

T 2/3

q

log(T ) + K log(T )

log(1/�)

⌘

6 Conclusion

In this work, we have introduced the scenario of contextual auctions in the presence of surplus-
maximizing buyers and have presented an algorithm that is able to achieve sublinear regret in this
setting, assuming buyers receive a discounted surplus. Once again, we stress the importance of the
contextual setting, as it contributes to the rise of targeted bids that result in auction with single high-
bidders, essentially reducing the auction to the posted-price scenario studied in this paper. Future
directions for extending this work include considering different surplus discount rates as well as
understanding whether small modifications to standard contextual online learning algorithms can
lead to no-strategic-regret guarantees.

1Note that we could also apply the kernelized LEAP algorithm in the multiple buyer setting.
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